Lars Mündermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10264406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel endoimaging system for endoscopic 3D reconstruction in bladder cancer patients. Minimally Invasive Therapy and Allied Technologies, 2022, 31, 34-41.	1.2	10
2	A Platform and Multisided Market for Translational, Software-Defined Medical Procedures in the Operating Room (OP 4.1): Proof-of-Concept Study. JMIR Medical Informatics, 2022, 10, e27743.	2.6	1
3	Heidelberg colorectal data set for surgical data science in the sensor operating room. Scientific Data, 2021, 8, 101.	5.3	37
4	Service-Oriented Medical Device Connectivity: Particular Standards for Endoscopic Surgery. , 2020, 2020, 5649-5652.		2
5	Prediction of laparoscopic procedure duration using unlabeled, multimodal sensor data. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1089-1095.	2.8	36
6	Classifying smoke in laparoscopic videos using SVM. Current Directions in Biomedical Engineering, 2017, 3, 191-194.	0.4	4
7	Features for detecting smoke in laparoscopic videos. Current Directions in Biomedical Engineering, 2017, 3, 521-524.	0.4	2
8	Amplitude and Phasing of Trunk Motion is Critical for the Efficacy of Gait Training Aimed at Reducing Ambulatory Loads at the Knee. Journal of Biomechanical Engineering, 2012, 134, 011010.	1.3	16
9	Markerless Motion Capture through Visual Hull, Articulated ICP and Subject Specific Model Generation. International Journal of Computer Vision, 2010, 87, 156-169.	15.6	155
10	Automatic Generation of a Subject-Specific Model for Accurate Markerless Motion Capture and Biomechanical Applications. IEEE Transactions on Biomedical Engineering, 2010, 57, 806-812.	4.2	38
11	Implications of increased medio-lateral trunk sway for ambulatory mechanics. Journal of Biomechanics, 2008, 41, 165-170.	2.1	229
12	Predicting changes in knee adduction moment due to load-altering interventions from pressure distribution at the foot in healthy subjects. Journal of Biomechanics, 2008, 41, 2989-2994.	2.1	41
13	Accurately measuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models. , 2007, , .		60
14	A framework for the functional identification of joint centers using markerless motion capture, validation for the hip joint. Journal of Biomechanics, 2007, 40, 3510-3515.	2.1	30
15	The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. Journal of NeuroEngineering and Rehabilitation, 2006, 3, 6.	4.6	211
16	Measuring human movement for biomechanical applications using markerless motion capture. , 2006, 6056, 246.		7
17	Conditions that influence the accuracy of anthropometric parameter estimation for human body segments using shape-from-silhouette. , 2005, , .		5
18	Most favorable camera configuration for a shape-from-silhouette markerless motion capture system for biomechanical analysis. , 2005, 5665, 278.		15

#	Article	IF	CITATIONS
19	Quantitative Modeling of Arabidopsis Development. Plant Physiology, 2005, 139, 960-968.	4.8	108
20	Implicit Visualization and Inverse Modeling of Growing Trees. Computer Graphics Forum, 2004, 23, 351-360.	3.0	20
21	Residual images in charged-coupled device detectors. Review of Scientific Instruments, 2002, 73, 2028-2032.	1.3	13
22	The use of positional information in the modeling of plants. , 2001, , .		162
23	Meyer–Neldel rule for dark current in charge-coupled devices. Journal of Applied Physics, 2001, 89, 8179-8182.	2.5	35