Alessandra Kupper Cardozo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1025838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NF-l̂ºB-inducing kinase (NIK) is activated in pancreatic l̂²-cells but does not contribute to the development of diabetes. Cell Death and Disease, 2022, 13, 476.	6.3	4
2	<i>SKAP2</i> , a Candidate Gene for Type 1 Diabetes, Regulates β-Cell Apoptosis and Glycemic Control in Newly Diagnosed Patients. Diabetes, 2021, 70, 464-476.	0.6	8
3	Prolactin protects against cytokine-induced beta-cell death by NFκB and JNK inhibition. Journal of Molecular Endocrinology, 2018, 61, 25-36.	2.5	14
4	Dysfunctional autophagy following exposure to pro-inflammatory cytokines contributes to pancreatic β-cell apoptosis. Cell Death and Disease, 2018, 9, 96.	6.3	55
5	Na+/Ca2+ Exchanger a Druggable Target to Promote β-Cell Proliferation and Function. Journal of the Endocrine Society, 2018, 2, 631-645.	0.2	8
6	The non-canonical NF-κB pathway and its contribution to β-cell failure in diabetes. Journal of Molecular Endocrinology, 2018, 61, F1-F6.	2.5	40
7	MCL-1 Is a Key Antiapoptotic Protein in Human and Rodent Pancreatic Î ² -Cells. Diabetes, 2017, 66, 2446-2458.	0.6	19
8	Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Journal of Molecular Endocrinology, 2016, 57, R1-R17.	2.5	70
9	A20 Inhibits β-Cell Apoptosis by Multiple Mechanisms and Predicts Residual β-Cell Function in Type 1 Diabetes. Molecular Endocrinology, 2016, 30, 48-61.	3.7	28
10	The non-canonical NF-κB pathway is induced by cytokines in pancreatic beta cells and contributes to cell death and proinflammatory responses in vitro. Diabetologia, 2016, 59, 512-521.	6.3	42
11	Heterozygous inactivation of plasma membrane Ca2+-ATPase in mice increases glucose-induced insulin release and beta cell proliferation, mass and viability. Diabetologia, 2015, 58, 2843-2850.	6.3	15
12	Heterozygous Inactivation of the Na/Ca Exchanger Increases Glucose-Induced Insulin Release, β-Cell Proliferation, and Mass. Diabetes, 2011, 60, 2076-2085.	0.6	26
13	Exposure to the Viral By-Product dsRNA or Coxsackievirus B5 Triggers Pancreatic Beta Cell Apoptosis via a Bim / Mcl-1 Imbalance. PLoS Pathogens, 2011, 7, e1002267.	4.7	52
14	Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia, 2010, 53, 1120-1130.	6.3	103
15	Plasma Membrane Ca2+-ATPase Overexpression Depletes Both Mitochondrial and Endoplasmic Reticulum Ca2+ Stores and Triggers Apoptosis in Insulin-secreting BRIN-BD11 Cells. Journal of Biological Chemistry, 2010, 285, 30634-30643.	3.4	33
16	Novel Insights into the Global Proteome Responses of Insulin-Producing INS-1E Cells To Different Degrees of Endoplasmic Reticulum Stress. Journal of Proteome Research, 2010, 9, 5142-5152.	3.7	22
17	Inhibition of Nuclear Factor-κB or Bax Prevents Endoplasmic Reticulum Stress- But Not Nitric Oxide-Mediated Apoptosis in INS-1E Cells. Endocrinology, 2009, 150, 4094-4103.	2.8	31
18	PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis. Diabetes, 2009, 58, 1283-1291.	0.6	152

#	Article	IF	CITATIONS
19	The Role for Endoplasmic Reticulum Stress in Diabetes Mellitus. Endocrine Reviews, 2008, 29, 42-61.	20.1	990
20	Initiation and execution of lipotoxic ER stress in pancreatic β-cells. Journal of Cell Science, 2008, 121, 2308-2318.	2.0	512
21	Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arquivos Brasileiros De Endocrinologia E Metabologia, 2008, 52, 156-165.	1.3	119
22	Selective Inhibition of Eukaryotic Translation Initiation Factor 2α Dephosphorylation Potentiates Fatty Acid-induced Endoplasmic Reticulum Stress and Causes Pancreatic β-Cell Dysfunction and Apoptosis. Journal of Biological Chemistry, 2007, 282, 3989-3997.	3.4	266
23	Transcriptional Regulation of the Endoplasmic Reticulum Stress Gene Chop in Pancreatic Insulin-Producing Cells. Diabetes, 2007, 56, 1069-1077.	0.6	86
24	Proteomics Analysis of Cytokine-induced Dysfunction and Death in Insulin-producing INS-1E Cells. Molecular and Cellular Proteomics, 2007, 6, 2180-2199.	3.8	73
25	Cell-permeable peptides induce dose- and length-dependent cytotoxic effects. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2222-2234.	2.6	92
26	Cytokine-Induced Proapoptotic Gene Expression in Insulin-Producing Cells Is Related to Rapid, Sustained, and Nonoscillatory Nuclear Factor-ήB Activation. Molecular Endocrinology, 2006, 20, 1867-1879.	3.7	124
27	Cytokines Downregulate the Sarcoendoplasmic Reticulum Pump Ca2+ ATPase 2b and Deplete Endoplasmic Reticulum Ca2+, Leading to Induction of Endoplasmic Reticulum Stress in Pancreatic Â-Cells. Diabetes, 2005, 54, 452-461.	0.6	471
28	Free Fatty Acids and Cytokines Induce Pancreatic β-Cell Apoptosis by Different Mechanisms: Role of Nuclear Factor-κB and Endoplasmic Reticulum Stress. Endocrinology, 2004, 145, 5087-5096.	2.8	530
29	Use of Microarray Analysis to Unveil Transcription Factor and Gene Networks Contributing to β Cell Dysfunction and Apoptosis. Annals of the New York Academy of Sciences, 2003, 1005, 55-74.	3.8	51
30	Discovery of Gene Networks Regulating Cytokine-Induced Dysfunction and Apoptosis in Insulin-Producing INS-1 Cells. Diabetes, 2003, 52, 2701-2719.	0.6	207
31	Molecular Regulation of Monocyte Chemoattractant Protein-1 Expression in Pancreatic Â-Cells. Diabetes, 2003, 52, 348-355.	0.6	81
32	Double-Stranded RNA Cooperates with Interferon-Î ³ and IL-1Î ² to Induce Both Chemokine Expression and Nuclear Factor-κB-Dependent Apoptosis in Pancreatic Î ² -Cells: Potential Mechanisms for Viral-Induced Insulitis and Î ² -Cell Death in Type 1 Diabetes Mellitus. Endocrinology, 2002, 143, 1225-1234.	2.8	65
33	A Comprehensive Analysis of Cytokine-induced and Nuclear Factor-κB-dependent Genes in Primary Rat Pancreatic β-Cells. Journal of Biological Chemistry, 2001, 276, 48879-48886.	3.4	264