Do-Hee Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10258186/publications.pdf Version: 2024-02-01

DO-HEE KIM

#	Article	IF	CITATIONS
1	Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation: Akt and AMPKα as upstream targets. Food and Chemical Toxicology, 2014, 65, 18-26.	3.6	80
2	Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells. International Journal of Oncology, 2014, 44, 1309-1315.	3.3	70
3	Nrf2 Mutagenic Activation Drives Hepatocarcinogenesis. Cancer Research, 2017, 77, 4797-4808.	0.9	68
4	Ginsenoside Rg3 Inhibits Constitutive Activation of NF-κB Signaling in Human Breast Cancer (MDA-MB-231) Cells: ERK and Akt as Potential Upstream Targets. Journal of Cancer Prevention, 2014, 19, 23-30.	2.0	62
5	Curcumin suppresses oncogenicity of human colon cancer cells by covalently modifying the cysteine 67 residue of SIRT1. Cancer Letters, 2018, 431, 219-229.	7.2	60
6	Eupatilin, a pharmacologically active flavone derived from Artemisia plants, induces cell cycle arrest in ras-transformed human mammary epithelial cells. Biochemical Pharmacology, 2004, 68, 1081-1087.	4.4	57
7	Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Molecular Carcinogenesis, 2016, 55, 1096-1110.	2.7	57
8	15-Deoxy-Δ 12,14 -prostaglandin J 2 upregulates the expression of heme oxygenase-1 and subsequently matrix metalloproteinase-1 in human breast cancer cells: possible roles of iron and ROS. Carcinogenesis, 2009, 30, 645-654.	2.8	56
9	Ginsenoside Rg ₃ Induces Apoptosis of Human Breast Cancer (MDA-MB-231) Cells. Journal of Cancer Prevention, 2013, 18, 177-185.	2.0	56
10	<i>Helicobacter pylori</i> Activates ILâ€6‣TAT3 Signaling in Human Gastric Cancer Cells: Potential Roles for Reactive Oxygen Species. Helicobacter, 2016, 21, 405-416.	3.5	52
11	Redox modulation of p53: Mechanisms and functional significance. Molecular Carcinogenesis, 2011, 50, 222-234.	2.7	49
12	Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α. PLoS ONE, 2016, 11, e0147038.	2.5	48
13	Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-κB activating kinase and ERK. Cancer Letters, 2014, 351, 41-49.	7.2	47
14	A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability. Toxins, 2018, 10, 515.	3.4	47
15	Functional details of the Mycobacterium tuberculosis VapBC26 toxin-antitoxin system based on a structural study: insights into unique binding and antibiotic peptides. Nucleic Acids Research, 2017, 45, 8564-8580.	14.5	44
16	Antimicrobial activity and stability of stapled helices of polybia-MP1. Archives of Pharmacal Research, 2017, 40, 1414-1419.	6.3	40
17	Antimicrobial activity of doubly-stapled alanine/lysine-based peptides. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4016-4019.	2.2	39
18	Regulation of the tumor suppressor PTEN by natural anticancer compounds. Annals of the New York Academy of Sciences, 2017, 1401, 136-149.	3.8	38

DO-НЕЕ КІМ

#	Article	IF	CITATIONS
19	Comparative Effects of Curcumin and Tetrahydrocurcumin on Dextran Sulfate Sodium-induced Colitis and Inflammatory Signaling in Mice. Journal of Cancer Prevention, 2018, 23, 18-24.	2.0	32
20	Functional insights into theÂStreptococcus pneumoniae HicBA toxin–antitoxin system based on a structural study. Nucleic Acids Research, 2018, 46, 6371-6386.	14.5	32
21	Isoliquiritigenin inhibits the proliferation of human renal carcinoma Caki cells through the ROS-mediated regulation of the Jak2/STAT3 pathway. Oncology Reports, 2017, 38, 575-583.	2.6	30
22	Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 768, 74-83.	1.0	29
23	17-β estradiol exerts anti-inflammatory effects through activation of Nrf2 in mouse embryonic fibroblasts. PLoS ONE, 2019, 14, e0221650.	2.5	26
24	Docosahexaenoic acid inhibits <i>Helicobacter pylori</i> â€induced STAT3 phosphorylation through activation of PPARÎ3. Molecular Nutrition and Food Research, 2016, 60, 1448-1457.	3.3	24
25	Thymoquinone induces apoptosis of human epidermoid carcinoma A431â€ [−] cells through ROS-mediated suppression of STAT3. Chemico-Biological Interactions, 2019, 312, 108799.	4.0	23
26	Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides. Archives of Pharmacal Research, 2018, 41, 1092-1097.	6.3	21
27	PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine. PLoS ONE, 2015, 10, e0142624.	2.5	18
28	<i>Helicobacter pylori</i> induces Snail expression through ROSâ€mediated activation of Erk and inactivation of GSKâ€3β in human gastric cancer cells. Molecular Carcinogenesis, 2016, 55, 2236-2246.	2.7	18
29	Mono-substitution effects on antimicrobial activity of stapled heptapeptides. Archives of Pharmacal Research, 2017, 40, 713-719.	6.3	18
30	Eupatilin Inhibits Proliferation of ras-Transformed Human Breast Epithelial (MCF-10A-ras) Cells. Journal of Environmental Pathology, Toxicology and Oncology, 2005, 24, 251-260.	1.2	18
31	Carnosic acid induces apoptosis through inactivation of Src/STAT3 signaling pathway in human renal carcinoma Caki cells. Oncology Reports, 2016, 35, 2723-2732.	2.6	17
32	Silicon dioxide nanoparticles induce COX-2 expression through activation of STAT3 signaling pathway in HaCaT cells. Toxicology in Vitro, 2018, 52, 235-242.	2.4	15
33	Antimicrobial and Hemolytic Activity of Stapled Heptapeptide Dimers. Bulletin of the Korean Chemical Society, 2016, 37, 1199-1203.	1.9	14
34	Structureâ€based design of peptides that trigger <i>Streptococcus pneumoniae</i> cell death. FEBS Journal, 2021, 288, 1546-1564.	4.7	13
35	Structure-Based <i>De Novo</i> Design of <i>Mycobacterium Tuberculosis</i> VapC-Activating Stapled Peptides. ACS Chemical Biology, 2020, 15, 2493-2498.	3.4	11
36	<i>N</i> â€Capping Effects of Stapled Heptapeptides on Antimicrobial and Hemolytic Activities. Bulletin of the Korean Chemical Society, 2015, 36, 2511-2515.	1.9	10

DO-НЕЕ КІМ

#	Article	IF	CITATIONS
37	15-Deoxy-Δ ^{12,14} -prostaglandin J ₂ stabilizes hypoxia inducible factor-1α through induction of heme oxygenase-1 and direct modification ofprolyl-4-hydroxylase 2. Free Radical Research, 2016, 50, 1140-1152.	3.3	9
38	The crystal structure of AcrR from <i>MycobacteriumÂtuberculosis</i> reveals a one omponent transcriptional regulation mechanism. FEBS Open Bio, 2019, 9, 1713-1725.	2.3	9
39	Structural and Functional Study of the <i>Klebsiella pneumoniae</i> VapBC Toxin–Antitoxin System, Including the Development of an Inhibitor That Activates VapC. Journal of Medicinal Chemistry, 2020, 63, 13669-13679.	6.4	9
40	Effects of 15â€Deoxyâ€î" ^{12,14} â€prostaglandin J ₂ on the Expression of p53 in MCFâ€7 Cells. Annals of the New York Academy of Sciences, 2009, 1171, 202-209.	3.8	8
41	Toxin-Activating Stapled Peptides Discovered by Structural Analysis Were Identified as New Therapeutic Candidates That Trigger Antibacterial Activity against Mycobacterium tuberculosis in the Mycobacterium smegmatis Model. Microorganisms, 2021, 9, 568.	3.6	7
42	The positive feedback loop between Nrf2 and phosphogluconate dehydrogenase stimulates proliferation and clonogenicity of human hepatoma cells. Free Radical Research, 2020, 54, 906-917.	3.3	6
43	Induced DNA bending by unique dimerization of HigA antitoxin. IUCrJ, 2020, 7, 748-760.	2.2	6
44	mRNA Interferase Bacillus cereus BC0266 Shows MazF-Like Characteristics Through Structural and Functional Study. Toxins, 2020, 12, 380.	3.4	4
45	Structural and functional analysis of the <i>Klebsiella pneumoniae</i> MazEF toxin–antitoxin system. IUCrJ, 2021, 8, 362-371.	2.2	4
46	Structure and dynamics study of translation initiation factor 1 from Staphylococcus aureus suggests its RNA binding mode. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 65-75.	2.3	3
47	6-[(N-2,3-dichlorophenyl)amino]-7-chloro-5,8-quinolinedione treatment of candidiasis in normal mice. Archives of Pharmacal Research, 1996, 19, 197-200.	6.3	2
48	Solution NMR Studies of Mycobacterium tuberculosis Proteins for Antibiotic Target Discovery. Molecules, 2017, 22, 1447.	3.8	2
49	15-Deoxy-Δ ^{12,14} -prostaglandin J ₂ up-regulates the expression of 15-hydroxyprostaglandin dehydrogenase through DNA methyltransferase 1 inactivation. Free Radical Research, 2019, 53, 335-347.	3.3	2
50	Role of PemI in the <i>Staphylococcus aureus</i> PemIK toxin–antitoxin complex: PemI controls PemK by acting as a PemK loop mimic. Nucleic Acids Research, 2022, 50, 2319-2333.	14.5	1
51	A Structural Approach into Drug Discovery Based on Autophagy. Life, 2021, 11, 526.	2.4	0