
Robert F Bruns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1025657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. Advances in Pharmacology, 2019, 86, 273-305.	1.2	30
2	Synthesis and Pharmacological Characterization of 2-(2,6-Dichlorophenyl)-1-((1 <i>S</i> ,3 <i>R</i>)-5-(3-hydroxy-3-methylbutyl)-3-(hydroxymethyl)-1-methyl-3,4-dil (LY3154207), a Potent, Subtype Selective, and Orally Available Positive Allosteric Modulator of the Human Dopamine D1 Receptor. Journal of Medicinal Chemistry, 2019, 62, 8711-8732.	nydr <u>o</u> isoqu	inolin-2(1 <i>H</i>
3	Preclinical profile of a dopamine D1 potentiator suggests therapeutic utility in neurological and psychiatric disorders. Neuropharmacology, 2018, 128, 351-365.	2.0	42
4	Intracellular Binding Site for a Positive Allosteric Modulator of the Dopamine D1 Receptor. Molecular Pharmacology, 2018, 94, 1232-1245.	1.0	33
5	An Allosteric Potentiator of the Dopamine D1 Receptor Increases Locomotor Activity in Human D1 Knock-In Mice without Causing Stereotypy or Tachyphylaxis. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 117-128.	1.3	36
6	Rules for Identifying Potentially Reactive or Promiscuous Compounds. Journal of Medicinal Chemistry, 2012, 55, 9763-9772.	2.9	263
7	Azetidinones as vasopressin V1a antagonists. Bioorganic and Medicinal Chemistry, 2007, 15, 2054-2080.	1.4	68
8	Rapid parallel synthesis applied to the optimization of a series of potent nonpeptide neuropeptide Y-1 receptor antagonists. Tetrahedron, 1999, 55, 11619-11639.	1.0	21
9	Structure-activity relationships of a series of benzothiophene-derived NPY Y1 antagonists: Optimization of the C-2 side chain. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 475-480.	1.0	11
10	Structure-activity relationships of a series of 1-substituted-4-methylbenzimidazole neuropeptide Y-1 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 473-476.	1.0	19
11	The Neuropeptide Y Y1 Antagonist, 1229U91, A Potent Agonist for the Human Pancreatic Polypeptide-Preferring (NPY Y4) Receptor. Peptides, 1998, 19, 537-542.	1.2	66
12	Synthesis and Evaluation of a Series of Novel 2-[(4-Chlorophenoxy)methyl]- benzimidazoles as Selective Neuropeptide Y Y1 Receptor Antagonists. Journal of Medicinal Chemistry, 1998, 41, 2709-2719.	2.9	140
13	Potent and Selective 1,2,3-Trisubstituted Indole NPY Y-1 Antagonists. Journal of Medicinal Chemistry, 1997, 40, 3712-3714.	2.9	81
14	3-Aryl-1,2-diacetamidopropane Derivatives as Novel and Potent NK-1 Receptor Antagonists. Journal of Medicinal Chemistry, 1996, 39, 736-748.	2.9	51
15	Conformational induction versus conformational selection: evidence from allosteric enhancers. Trends in Pharmacological Sciences, 1996, 17, 189.	4.0	21
16	PD 81,723, an Allosteric Enhancer of the A 1 Adenosine Receptor, Lowers the Threshold for Ischemic Preconditioning in Dogs. Circulation Research, 1996, 79, 415-423.	2.0	75
17	Cyclosporin A is a substance P (tachykinin NK1) receptor antagonist. European Journal of Pharmacology, 1995, 289, 439-446.	2.7	25
18	Diphenylpyrazolidinone and benzodiazepine cholecystokinin antagonists: A case of convergent evolution in medicinal chemistry. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 875-880.	1.0	26

ROBERT F BRUNS

#	Article	IF	CITATIONS
19	betaProline analogs as agonists at the strychnine-sensitive glycine receptor. Journal of Medicinal. Chemistry, 1992, 35, 233-241.	2.9	31
20	Inhibition of protein kinase C by calphostin C is light-dependent. Biochemical and Biophysical Research Communications, 1991, 176, 288-293.	1.0	369
21	Species differences in affinities of non-peptide antagonists for substance p receptors. European Journal of Pharmacology, 1991, 197, 237-238.	1.7	162
22	Functional activity of the adenosine binding enhancer, PD 81,723, in the in vitro hippocampal slice. Brain Research, 1991, 567, 181-187.	1.1	22
23	Role of Adenosine in Energy Supply/Demand Balance. Nucleosides & Nucleotides, 1991, 10, 931-943.	0.5	34
24	Purinergic Receptors, Past and Future (Closing Remarks). Nucleosides & Nucleotides, 1991, 10, 1247-1251.	0.5	0
25	Adenosine Receptors Annals of the New York Academy of Sciences, 1990, 603, 211-225.	1.8	96
26	Structure-Activity Relationships of Adenosine A1 and A2 Receptors. , 1990, , 57-103.		21
27	Comparison of the behavioral effects of adenosine agonists and dopamine antagonists in mice. Psychopharmacology, 1989, 98, 31-37.	1.5	109
28	C2,N6-Disubstituted adenosines: synthesis and structure-activity relationships. Journal of Medicinal Chemistry, 1989, 32, 1667-1673.	2.9	41
29	Characteristics of an adenosine A1 binding site in human placental membranes. Archives of Biochemistry and Biophysics, 1989, 268, 191-202.	1.4	12
30	Linear and proximal benzo-separated alkylated xanthines as adenosine-receptor antagonists. Journal of Medicinal Chemistry, 1989, 32, 2247-2254.	2.9	23
31	[1,2,4]Triazolo[4,3-a]quinoxalin-4-amines: a new class of A1 receptor selective adenosine antagonists. Journal of Medicinal Chemistry, 1988, 31, 1011-1014.	2.9	48
32	N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine and its uronamide derivatives. Novel adenosine agonists with both high affinity and high selectivity for the adenosine A2 receptor. Journal of Medicinal Chemistry, 1988, 31, 1282-1285.	2.9	88
33	Chapter 5. Central Nervous System Actions of Adenosine Agonists and Antagonists. Annual Reports in Medicinal Chemistry, 1988, , 39-48.	0.5	3
34	N6-(2,2-diphenylethyl)adenosine, a novel adenosine receptor agonist with antipsychotic-like activity. Journal of Medicinal Chemistry, 1987, 30, 1709-1711.	2.9	54
35	Binding of the A1-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 335, 59-63.	1.4	363
36	PD 115,199: An antagonist ligand for adenosine A2 receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 335, 64-69.	1.4	92

ROBERT F BRUNS

#	Article	IF	CITATIONS
37	Nomenclature for excitatory amino acid receptors. Trends in Neurosciences, 1986, 9, 62.	4.2	6
38	Ribose-modified adenosine analogs as adenosine receptor agonists. Journal of Medicinal Chemistry, 1986, 29, 346-353.	2.9	53
39	Synthesis of xanthines as adenosine antagonists, a practical quantitative structure-activity relationship application. Journal of Medicinal Chemistry, 1985, 28, 1071-1079.	2.9	60
40	N6-Cycloalkyladenosines. Potent, A1-selective adenosine agonists. Journal of Medicinal Chemistry, 1985, 28, 1383-1384.	2.9	104
41	A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Analytical Biochemistry, 1983, 132, 74-81.	1.1	598
42	Binding of leukotrienes C4 and D4 to membranes from guinea pig lung: Regulation by ions and gaunine nucleotides. Life Sciences, 1983, 33, 645-653.	2.0	80
43	RECEPTORS FOR ADENOSINE AND ADENINE NUCLEOTIDES. , 1983, , 117-146.		1
44	Adenosine antagonism by purines, pteridines and benzopteridines in human fibroblasts. Biochemical Pharmacology, 1981, 30, 325-333.	2.0	149
45	Adenosine receptor activation by adenine nucleotides requires conversion of the nucleotides to adenosine. Naunyn-Schmiedeberg's Archives of Pharmacology, 1980, 315, 5-13.	1.4	68
46	Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Canadian Journal of Physiology and Pharmacology, 1980, 58, 673-691.	0.7	194