Zhan-Wei Suo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1024964/publications.pdf

Version: 2024-02-01

687363 794594 28 421 13 19 citations h-index g-index papers 28 28 28 496 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Upregulation of RCAN1.4 in spinal dorsal horn is involved in inflammatory pain hypersensitivity. Neuroscience Letters, 2022, 775, 136538.	2.1	O
2	Functional expression of glycine receptors in DRG neurons of mice. European Journal of Pharmacology, 2021, 899, 174034.	3 . 5	3
3	AKAP150 and its Palmitoylation Contributed to Pain Hypersensitivity Via Facilitating Synaptic Incorporation of GluA1-Containing AMPA Receptor in Spinal Dorsal Horn. Molecular Neurobiology, 2021, 58, 6505-6519.	4.0	5
4	BDNF modulated KCC2 ubiquitylation in spinal cord dorsal horn of mice. European Journal of Pharmacology, 2021, 906, 174205.	3 . 5	7
5	Ubiquitination and functional modification of GluN2B subunit–containing NMDA receptors by Cbl-b in the spinal cord dorsal horn. Science Signaling, 2020, 13, .	3.6	13
6	Analgesic action of adenosine A1 receptor involves the dephosphorylation of glycine receptor $\hat{l}\pm 1$ ins subunit in spinal dorsal horn of mice. Neuropharmacology, 2020, 176, 108219.	4.1	8
7	SNAP25/syntaxin4/VAMP2/Munc18-1 Complexes in Spinal Dorsal Horn Contributed to Inflammatory Pain. Neuroscience, 2020, 429, 203-212.	2.3	5
8	mGluR5/ERK signaling regulated the phosphorylation and function of glycine receptor $\hat{l}\pm 1$ ins subunit in spinal dorsal horn of mice. PLoS Biology, 2019, 17, e3000371.	5 . 6	13
9	Spinophilin negatively controlled the function of transient receptor potential vanilloid 1 in dorsal root ganglia neurons of mice. European Journal of Pharmacology, 2019, 863, 172700.	3.5	5
10	A synthetic peptide disturbing GluN2A/SHP1 interaction in dorsal root ganglion attenuated pathological pain. European Journal of Pharmacology, 2019, 854, 62-69.	3 . 5	3
11	Ubiquitination and inhibition of glycine receptor by HUWE1 in spinal cord dorsal horn. Neuropharmacology, 2019, 148, 358-365.	4.1	10
12	Inhibition of protein tyrosine phosphatase 1B in spinal cord dorsal horn of rats attenuated diabetic neuropathic pain. European Journal of Pharmacology, 2018, 827, 189-197.	3 . 5	12
13	Enhanced Activities of \hat{l} Subunit-containing GABAA Receptors Blocked Spinal Long-term Potentiation and Attenuated Formalin-induced Spontaneous Pain. Neuroscience, 2018, 371, 155-165.	2.3	8
14	Activity-dependent Synaptic Recruitment of Neuroligin 1 in Spinal Dorsal Horn Contributed to Inflammatory Pain. Neuroscience, 2018, 388, 1 -10.	2.3	10
15	Disruption of SHP1/NMDA receptor signaling in spinal cord dorsal horn alleviated inflammatory pain. Neuropharmacology, 2018, 137, 104-113.	4.1	15
16	Striatal-enriched phosphatase 61 inhibited the nociceptive plasticity in spinal cord dorsal horn of rats. Neuroscience, 2017, 352, 97-105.	2.3	7
17	Adenosine A1 receptor potentiated glycinergic transmission in spinal cord dorsal horn of rats after peripheral inflammation. Neuropharmacology, 2017, 126, 158-167.	4.1	18
18	Activity-dependent dephosphorylation of paxillin contributed to nociceptive plasticity in spinal cord dorsal horn. Pain, 2016, 157, 652-665.	4.2	11

#	Article	IF	CITATION
19	Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-10.	1.2	15
20	Spinophilin-Targeted Protein Phosphatase-1 Alleviated Inflammatory Pain by Negative Control of MEK/ERK Signaling in Spinal Cord Dorsal Horn of Rats. Journal of Neuroscience, 2015, 35, 13989-14001.	3.6	32
21	Ht31 peptide inhibited inflammatory pain by blocking NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice. Neuropharmacology, 2015, 89, 290-297.	4.1	13
22	$\hat{l}\pm 2$ noradrenergic receptor suppressed CaMKII signaling in spinal dorsal horn of mice with inflammatory pain. European Journal of Pharmacology, 2014, 724, 16-23.	3.5	17
23	Activation of $\hat{l}\pm 2$ adrenoceptors inhibited NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice with inflammatory pain. Neuropharmacology, 2014, 77, 185-192.	4.1	27
24	Inhibition of protein tyrosine phosphatases in spinal dorsal horn attenuated inflammatory pain by repressing Src signaling. Neuropharmacology, 2013, 70, 122-130.	4.1	19
25	Ca ²⁺ /calmodulinâ€dependent protein kinase II in spinal dorsal horn contributes to the pain hypersensitivity induced by γâ€aminobutyric acid type a receptor inhibition. Journal of Neuroscience Research, 2013, 91, 1473-1482.	2.9	10
26	GABAergic disinhibition induced pain hypersensitivity by upregulating NMDA receptor functions in spinal dorsal horn. Neuropharmacology, 2011, 60, 921-929.	4.1	34
27	cAMP-dependent protein kinase activated Fyn in spinal dorsal horn to regulate NMDA receptor function during inflammatory pain. Journal of Neurochemistry, 2011, 116, 93-104.	3.9	63
28	NR2B phosphorylation at tyrosine 1472 in spinal dorsal horn contributed to Nâ€methylâ€Dâ€aspartateâ€induced pain hypersensitivity in mice. Journal of Neuroscience Research, 2011, 89,	2.9	38