
Zhan-Wei Suo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1024964/publications.pdf Version: 2024-02-01

7HAN-WEISUO

#	Article	IF	CITATIONS
1	cAMP-dependent protein kinase activated Fyn in spinal dorsal horn to regulate NMDA receptor function during inflammatory pain. Journal of Neurochemistry, 2011, 116, 93-104.	3.9	63
2	NR2B phosphorylation at tyrosine 1472 in spinal dorsal horn contributed to Nâ€methylâ€Dâ€aspartateâ€induced pain hypersensitivity in mice. Journal of Neuroscience Research, 2011, 89, 1869-1876.	2.9	38
3	GABAergic disinhibition induced pain hypersensitivity by upregulating NMDA receptor functions in spinal dorsal horn. Neuropharmacology, 2011, 60, 921-929.	4.1	34
4	Spinophilin-Targeted Protein Phosphatase-1 Alleviated Inflammatory Pain by Negative Control of MEK/ERK Signaling in Spinal Cord Dorsal Horn of Rats. Journal of Neuroscience, 2015, 35, 13989-14001.	3.6	32
5	Activation of α2 adrenoceptors inhibited NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice with inflammatory pain. Neuropharmacology, 2014, 77, 185-192.	4.1	27
6	Inhibition of protein tyrosine phosphatases in spinal dorsal horn attenuated inflammatory pain by repressing Src signaling. Neuropharmacology, 2013, 70, 122-130.	4.1	19
7	Adenosine A1 receptor potentiated glycinergic transmission in spinal cord dorsal horn of rats after peripheral inflammation. Neuropharmacology, 2017, 126, 158-167.	4.1	18
8	$\hat{l}\pm 2$ noradrenergic receptor suppressed CaMKII signaling in spinal dorsal horn of mice with inflammatory pain. European Journal of Pharmacology, 2014, 724, 16-23.	3.5	17
9	Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-10.	1.2	15
10	Disruption of SHP1/NMDA receptor signaling in spinal cord dorsal horn alleviated inflammatory pain. Neuropharmacology, 2018, 137, 104-113.	4.1	15
11	Ht31 peptide inhibited inflammatory pain by blocking NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice. Neuropharmacology, 2015, 89, 290-297.	4.1	13
12	mGluR5/ERK signaling regulated the phosphorylation and function of glycine receptor α1ins subunit in spinal dorsal horn of mice. PLoS Biology, 2019, 17, e3000371.	5.6	13
13	Ubiquitination and functional modification of GluN2B subunit–containing NMDA receptors by Cbl-b in the spinal cord dorsal horn. Science Signaling, 2020, 13, .	3.6	13
14	Inhibition of protein tyrosine phosphatase 1B in spinal cord dorsal horn of rats attenuated diabetic neuropathic pain. European Journal of Pharmacology, 2018, 827, 189-197.	3.5	12
15	Activity-dependent dephosphorylation of paxillin contributed to nociceptive plasticity in spinal cord dorsal horn. Pain, 2016, 157, 652-665.	4.2	11
16	Ca ²⁺ /calmodulinâ€dependent protein kinase II in spinal dorsal horn contributes to the pain hypersensitivity induced by γâ€aminobutyric acid type a receptor inhibition. Journal of Neuroscience Research, 2013, 91, 1473-1482.	2.9	10
17	Activity-dependent Synaptic Recruitment of Neuroligin 1 in Spinal Dorsal Horn Contributed to Inflammatory Pain. Neuroscience, 2018, 388, 1-10.	2.3	10
18	Ubiquitination and inhibition of glycine receptor by HUWE1 in spinal cord dorsal horn. Neuropharmacology, 2019, 148, 358-365.	4.1	10

ZHAN-WEI SUO

#	Article	IF	CITATIONS
19	Enhanced Activities of δSubunit-containing GABAA Receptors Blocked Spinal Long-term Potentiation and Attenuated Formalin-induced Spontaneous Pain. Neuroscience, 2018, 371, 155-165.	2.3	8
20	Analgesic action of adenosine A1 receptor involves the dephosphorylation of glycine receptor α1ins subunit in spinal dorsal horn of mice. Neuropharmacology, 2020, 176, 108219.	4.1	8
21	Striatal-enriched phosphatase 61 inhibited the nociceptive plasticity in spinal cord dorsal horn of rats. Neuroscience, 2017, 352, 97-105.	2.3	7
22	BDNF modulated KCC2 ubiquitylation in spinal cord dorsal horn of mice. European Journal of Pharmacology, 2021, 906, 174205.	3.5	7
23	Spinophilin negatively controlled the function of transient receptor potential vanilloid 1 in dorsal root ganglia neurons of mice. European Journal of Pharmacology, 2019, 863, 172700.	3.5	5
24	SNAP25/syntaxin4/VAMP2/Munc18-1 Complexes in Spinal Dorsal Horn Contributed to Inflammatory Pain. Neuroscience, 2020, 429, 203-212.	2.3	5
25	AKAP150 and its Palmitoylation Contributed to Pain Hypersensitivity Via Facilitating Synaptic Incorporation of GluA1-Containing AMPA Receptor in Spinal Dorsal Horn. Molecular Neurobiology, 2021, 58, 6505-6519.	4.0	5
26	A synthetic peptide disturbing GluN2A/SHP1 interaction in dorsal root ganglion attenuated pathological pain. European Journal of Pharmacology, 2019, 854, 62-69.	3.5	3
27	Functional expression of glycine receptors in DRG neurons of mice. European Journal of Pharmacology, 2021, 899, 174034.	3.5	3
28	Upregulation of RCAN1.4 in spinal dorsal horn is involved in inflammatory pain hypersensitivity. Neuroscience Letters, 2022, 775, 136538.	2.1	0