Jessica Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1024812/publications.pdf

Version: 2024-02-01

414414 361413 33 1,496 20 32 citations h-index g-index papers 33 33 33 3904 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nature Genetics, 2015, 47, 1085-1090.	21.4	164
2	Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations. Nature Communications, 2017, 8, 266.	12.8	157
3	Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurology, The, 2020, 19, 908-918.	10.2	139
4	Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis. Lancet Oncology, The, 2016, 17, 1363-1373.	10.7	133
5	Common variants in the HLA-DQ region confer susceptibility to idiopathic achalasia. Nature Genetics, 2014, 46, 901-904.	21.4	104
6	Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 2019, 9, 77.	4.8	82
7	De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment. American Journal of Human Genetics, 2015, 97, 493-500.	6.2	71
8	Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes. Nature Communications, 2014, 5, 5236.	12.8	61
9	Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 2014, 22, 675-680.	2.8	59
10	Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression. Molecular Psychiatry, 2021, 26, 4179-4190.	7.9	58
11	Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 2021, 26, 3004-3017.	7.9	56
12	Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome. Nature Genetics, 2021, 53, 1006-1021.	21.4	44
13	New insights into the clinical and molecular spectrum of the novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-mediated actin dynamics. Genetics in Medicine, 2021, 23, 543-554.	2.4	32
14	De novo FBXO11 mutations are associated with intellectual disability and behavioural anomalies. Human Genetics, 2018, 137, 401-411.	3.8	29
15	Novel pathogenic alterations in pediatric and adult desmoid-type fibromatosis – A systematic analysis of 204 cases. Scientific Reports, 2020, 10, 3368.	3.3	29
16	De novo nonsense and frameshift variants of TCF20 in individuals with intellectual disability and postnatal overgrowth. European Journal of Human Genetics, 2016, 24, 1739-1745.	2.8	28
17	Phosphatidylinositol-3-kinase (PI3K)/Akt Signaling is Functionally Essential in Myxoid Liposarcoma. Molecular Cancer Therapeutics, 2019, 18, 834-844.	4.1	28
18	Supportive evidence for <i><scp>FOXP</scp>1</i> <, <i><scp>BARX</scp>1</i> , and <i><scp>FOXF</scp>1</i> as genetic risk loci for the development of esophageal adenocarcinoma. Cancer Medicine, 2015, 4, 1700-1704.	2.8	26

#	Article	IF	Citations
19	Evidence for <i><scp>PTGER</scp>4</i> , <i><scp>PSCA</scp>,</i> and <i><scp>MBOAT</scp>7</i> as risk genes for gastric cancer on the genome and transcriptome level. Cancer Medicine, 2018, 7, 5057-5065.	2.8	22
20	Genetic variation in the <i>lymphotoxin-\hat{l} + </i> (<i>LTA </i>)/ <i> tumour necrosis factor-\hat{l} + </i> (<i>TNF\hat{l} + </i>) locus as a risk factor for idiopathic achalasia. Gut, 2014, 63, 1401-1409.	12.1	21
21	The Barrettâ€associated variants at <i><scp>GDF</scp>7</i> and <i><scp>TBX</scp>5</i> also increase esophageal adenocarcinoma risk. Cancer Medicine, 2016, 5, 888-891.	2.8	21
22	The HLA-DQβ1 insertion is a strong achalasia risk factor and displays a geospatial north–south gradient among Europeans. European Journal of Human Genetics, 2016, 24, 1228-1231.	2.8	21
23	Comprehensive epidemiological and genotype–phenotype analyses in a large European sample with idiopathic achalasia. European Journal of Gastroenterology and Hepatology, 2016, 28, 689-695.	1.6	20
24	De novo microdeletions and point mutations affecting <i>SOX2</i> in three individuals with intellectual disability but without major eye malformations. American Journal of Medical Genetics, Part A, 2017, 173, 435-443.	1.2	19
25	Nine newly identified individuals refine the phenotype associated with <i>MYT1L</i> mutations. American Journal of Medical Genetics, Part A, 2020, 182, 1021-1031.	1.2	19
26	Microdeletions in 9q33.3-q34.11 in five patients with intellectual disability, microcephaly, and seizures of incomplete penetrance: is STXBP1 not the only causative gene?. Molecular Cytogenetics, 2015, 8, 72.	0.9	14
27	Germline variation in the insulin-like growth factor pathway and risk of Barrett's esophagus and esophageal adenocarcinoma. Carcinogenesis, 2021, 42, 369-377.	2.8	11
28	Characterization of esophageal inflammation in patients with achalasia. A retrospective immunohistochemical study. Human Pathology, 2019, 85, 228-234.	2.0	8
29	Shared Genetic Etiology of Obesity-Related Traits and Barrett's Esophagus/Adenocarcinoma: Insights from Genome-Wide Association Studies. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 427-433.	2.5	7
30	First genotypeâ€phenotype study reveals HLAâ€DQβ1 insertion heterogeneity in highâ€resolution manometry achalasia subtypes. United European Gastroenterology Journal, 2019, 7, 45-51.	3.8	5
31	Identification of loci of functional relevance to Barrett's esophagus and esophageal adenocarcinoma: Cross-referencing of expression quantitative trait loci data from disease-relevant tissues with genetic association data. PLoS ONE, 2019, 14, e0227072.	2.5	5
32	De Novo Duplication of 11p15 Associated With Congenital Diaphragmatic Hernia. Frontiers in Pediatrics, 2018, 6, 116.	1.9	2
33	eQTL set-based association analysis identifies novel susceptibility loci for Barrett's esophagus and esophageal adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 0, , .	2.5	1