List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1024687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
2	Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density. Advanced Materials, 2018, 30, 1706054.	11.1	405
3	ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2016, 4, 15836-15840.	5.2	199
4	Supercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers. ACS Applied Materials & Interfaces, 2013, 5, 9983-9990.	4.0	183
5	Spinel photocatalysts for environmental remediation, hydrogen generation, CO ₂ reduction and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 11078-11104.	5.2	176
6	Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chemical Engineering Journal, 2019, 366, 550-559.	6.6	170
7	New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO ₂ onto Ferroelectricâ€Encapsulated Cathode: Toward Ultrastable Freeâ€Standing Room Temperature Sodium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1705537.	7.8	167
8	Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy, 2020, 77, 105080.	8.2	157
9	Biomassâ€Đerived Carbons for Sodiumâ€ion Batteries and Sodiumâ€ion Capacitors. ChemSusChem, 2020, 13, 1275-1295.	3.6	96
10	Hierarchical CuO _x –Co ₃ O ₄ heterostructure nanowires decorated on 3D porous nitrogen-doped carbon nanofibers as flexible and free-standing anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 7691-7700.	5.2	90
11	Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. Journal of Materials Chemistry C, 2016, 4, 6037-6044.	2.7	88
12	In situ surface decoration of Fe3C/Fe3O4/C nanosheets: Towards bi-functional activated carbons with supercapacitance and efficient dye adsorption. Bioresource Technology, 2018, 256, 208-215.	4.8	82
13	Hybrid hollow spheres of carbon@Co _x Ni _{1â^'x} MoO ₄ as advanced electrodes for high-performance asymmetric supercapacitors. Nanoscale, 2019, 11, 3281-3291.	2.8	79
14	The enhancement of electrochemical capacitance of biomass-carbon by pyrolysis of extracted nanofibers. Electrochimica Acta, 2017, 228, 398-406.	2.6	73
15	Large cale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. Small, 2020, 16, e1905620.	5.2	71
16	Rational design of positive-hexagon-shaped two-dimensional ZIF-derived materials as improved bifunctional oxygen electrocatalysts for use as long-lasting rechargeable Zn–Air batteries. Applied Catalysis B: Environmental, 2019, 256, 117871.	10.8	70
17	CoO-Co 3 O 4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries. Electrochimica Acta, 2017, 241, 252-260.	2.6	69
18	Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 6161-6172.	5.2	61

#	Article	IF	CITATIONS
19	Ultrahigh surface area carbon nanosheets derived from lotus leaf with super capacities for capacitive deionization and dye adsorption. Applied Surface Science, 2020, 524, 146485.	3.1	60
20	MoS ₂ nanoflowers encapsulated into carbon nanofibers containing amorphous SnO ₂ as an anode for lithium-ion batteries. Nanoscale, 2019, 11, 16253-16261.	2.8	52
21	Solvothermal synthesis of ternary Cu2O-CuO-RGO composites as anode materials for high performance lithium-ion batteries. Electrochimica Acta, 2016, 222, 1650-1659.	2.6	50
22	Construction of NiCo ₂ S ₄ @NiMoO ₄ Coreâ€Shell Nanosheet Arrays with Superior Electrochemical Performance for Asymmetric Supercapacitors. ChemElectroChem, 2019, 6, 590-597.	1.7	49
23	PdNi alloy decorated 3D hierarchicallyÂN, S co-doped macro–mesoporous carbon composites as efficient free-standing and binder-free catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 10856-10867.	5.2	47
24	Electrospun FeS nanorods with enhanced stability as counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2017, 229, 229-238.	2.6	46
25	Two-dimensional hierarchically porous carbon nanosheets for flexible aqueous supercapacitors with high volumetric capacitance. Nanoscale, 2019, 11, 11086-11092.	2.8	46
26	Air plasma etching towards rich active sites in Fe/N-porous carbon for the oxygen reduction reaction with superior catalytic performance. Journal of Materials Chemistry A, 2017, 5, 16605-16610.	5.2	45
27	Ultra small few layer MoS2 embedded into three-dimensional macro-micro-mesoporous carbon as a high performance lithium ion batteries anode with superior lithium storage capacity. Electrochimica Acta, 2019, 317, 638-647.	2.6	43
28	Electrocontrolled Liquid Marbles for Rapid Miniaturized Organic Reactions. Advanced Functional Materials, 2019, 29, 1901101.	7.8	43
29	Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 305, 121058.	10.8	42
30	Janus Photothermal Membrane as an Energy Generator and a Mass-Transfer Accelerator for High-Efficiency Solar-Driven Membrane Distillation. ACS Applied Materials & Interfaces, 2021, 13, 26861-26869.	4.0	37
31	Co–Mo–P carbon nanospheres derived from metal–organic frameworks as a high-performance electrocatalyst towards efficient water splitting. Journal of Materials Chemistry A, 2021, 9, 1143-1149.	5.2	36
32	Oxygen-vacancy-rich TiO2-coated carbon nanofibers for fast sodium storage in high-performance sodium-ion hybrid capacitors. Journal of Power Sources, 2021, 493, 229678.	4.0	34
33	Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode. Nanoscale, 2021, 13, 12223-12232.	2.8	33
34	Flexible Three-Dimensional Heterostructured ZnO-Co ₃ O ₄ on Carbon Cloth as Free-Standing Anode with Outstanding Li/Na Storage Performance. Journal of the Electrochemical Society, 2018, 165, A3932-A3942.	1.3	32
35	In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes. Journal of Materials Science and Technology, 2021, 75, 110-117.	5.6	31
36	Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Materialia, 2016, 112, 11-19.	3.8	30

#	Article	IF	CITATIONS
37	N-Doped porous tremella-like Fe ₃ C/C electrocatalysts derived from metal–organic frameworks for oxygen reduction reaction. Dalton Transactions, 2020, 49, 797-807.	1.6	29
38	Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coordination Chemistry Reviews, 2021, 449, 214209.	9.5	28
39	Mesoporous NiCo ₂ O ₄ networks with enhanced performance as counter electrodes for dye-sensitized solar cells. Dalton Transactions, 2017, 46, 4403-4411.	1.6	26
40	Identifying the Active Sites of a Single Atom Catalyst with pH-Universal Oxygen Reduction Reaction Activity. Cell Reports Physical Science, 2020, 1, 100115.	2.8	26
41	Chitin-derived porous carbon loaded with Co, N and S with enhanced performance towards electrocatalytic oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Electrochimica Acta, 2019, 304, 350-359.	2.6	22
42	Bifunctional oxygen electrocatalysis on ultra-thin Co ₉ S ₈ /MnS carbon nanosheets for all-solid-state zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 22635-22642.	5.2	22
43	Unprecedented Superhighâ€Rate and Ultrastable Anode for Highâ€Power Battery via Cationic Disordering. Advanced Energy Materials, 2022, 12, .	10.2	22
44	Durable, Washable, and Flexible Conductive PET Fabrics Designed by Fiber Interfacial Molecular Engineering. Macromolecular Materials and Engineering, 2016, 301, 1383-1389.	1.7	21
45	In situ growth of morphology-controllable nickel sulfides as efficient counter electrodes for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2016, 20, 2373-2382.	1.2	17
46	Supramolecularâ€mediated ballâ€inâ€ball porous carbon nanospheres for ultrafast energy storage. InformaÄnÃ-Materiály, 2022, 4, .	8.5	16
47	Electrospun NiCo2S4 with extraordinary electrocatalytic activity as counter electrodes for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2017, 21, 3579-3588.	1.2	15
48	Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe. Molecules, 2020, 25, 1585.	1.7	15
49	3D Networks of Carbonâ€Coated Magnesiumâ€Doped Olivine Nanofiber as Binderâ€Free Cathodes for Highâ€Performance Liâ€Ion Battery. Advanced Materials Interfaces, 2016, 3, 1600241.	1.9	14
50	Enhanced electrocatalytic performance of Fe-TiO2/N-doped graphene cathodes for rechargeable Li-O2 batteries. Journal of Solid State Electrochemistry, 2018, 22, 909-917.	1.2	14
51	Synthesis of Si-Sb-ZnO Composites as High-Performance Anodes for Lithium-ion Batteries. Nanoscale Research Letters, 2015, 10, 414.	3.1	12
52	Carbon-coated LiFePO4synthesized by a simple solvothermal method. CrystEngComm, 2016, 18, 7537-7543.	1.3	12
53	High efficiency nitrogen doping and single atom cobalt anchoring <i>via</i> supermolecules for oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 3398-3408.	5.2	12
54	Iron oxide encapsulated titanium niobate nanotubes as a high-performance lithium-free anode for solid-state batteries. Journal of Materials Chemistry A, 2021, 9, 4880-4889.	5.2	10

#	Article	IF	CITATIONS
55	N/P co-doped porous carbon microspheres for supercapacitor with long-term electrochemical stability. Journal of Materials Research, 2021, 36, 1250-1261.	1.2	10
56	Co-CoO/MnO Heterostructured Nanocrystals Anchored on N/P-Doped 3D Porous Graphene for High-Performance Pseudocapacitive Lithium Storage. Journal of the Electrochemical Society, 2019, 166, A3820-A3829.	1.3	9
57	Extraordinary dual-ion electrochemical deionization capacity and energy efficiency enabled by coupling of Na ₃ Fe ₂ (PO ₄) ₃ and NiVAl layered double hydroxide electrodes. Journal of Materials Chemistry A, 2021, 9, 22913-22925.	5.2	9
58	N-doped porous carbon nanofibers embedded with TiN nanoparticles for high-performance Li–S batteries. Materials Research Letters, 2021, 9, 490-495.	4.1	9
59	Preparation and electrochemical properties of Si0.8Sb/C nanofiber composite anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2281-2289.	1.2	7
60	LiFePO ₄ /RGO composites synthesized by a solid phase combined with carbothermal reduction method. Ferroelectrics, 2018, 528, 1-7.	0.3	7
61	Facile synthesis of N-doped carbon-coated Si/Cu alloy with enhanced cyclic performance for lithium ion batteries. RSC Advances, 2016, 6, 78100-78105.	1.7	6
62	Three-dimensional nanoarchitecture SnSbZn–C composite nanofibers as anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 52746-52753.	1.7	5
63	NiCo ₂ S ₄ nanosheets decorated on nitrogen-doped hollow carbon nanospheres as advanced electrodes for high-performance asymmetric supercapacitors. Nanotechnology, 2022, 33, 085404.	1.3	5
64	Synthesis of Ultrathin MoS ₂ Nanosheets Embedded in 3D Hierarchically Nitrogenâ€andâ€Sulfur Coâ€Doped Porous Carbon Composites as Efficient Oxygen Reduction Reaction Catalyst. ChemElectroChem, 2020, 7, 3260-3268.	1.7	4
65	Constructing advanced high-performance sodium-ion batteries anode materials via the morphology tuning strategy of lignin-derived carbon. Journal of Materials Research, 2021, 36, 3460-3471.	1.2	2