David Kremer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10246437/publications.pdf Version: 2024-02-01

DAVID KDEMED

#	Article	IF	CITATIONS
1	Efficacy and safety of temelimab in multiple sclerosis: Results of a randomized phase 2b and extension study. Multiple Sclerosis Journal, 2022, 28, 429-440.	3.0	40
2	The degree of cortical plasticity correlates with cognitive performance in patients with Multiple Sclerosis. Brain Stimulation, 2022, 15, 403-413.	1.6	6
3	Immune response to SARS-CoV-2 vaccination in relation to peripheral immune cell profiles among patients with multiple sclerosis receiving ocrelizumab. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 978-985.	1.9	17
4	Case Report: Successful Stabilization of Marburg Variant Multiple Sclerosis With Ocrelizumab Following High-Dose Cyclophosphamide Rescue. Frontiers in Neurology, 2021, 12, 696807.	2.4	1
5	Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Frontiers in Immunology, 2021, 12, 747143.	4.8	3
6	Case Report: Persisting Lymphopenia During Neuropsychiatric Tumefactive Multiple Sclerosis Rebound Upon Fingolimod Withdrawal. Frontiers in Neurology, 2021, 12, 785180.	2.4	3
7	Nitrosative Stress Molecules in Multiple Sclerosis: A Meta-Analysis. Biomedicines, 2021, 9, 1899.	3.2	2
8	Long-term follow-up of multiple sclerosis studies and outcomes from early treatment of clinically isolated syndrome in the BENEFIT 11 study. Journal of Neurology, 2020, 267, 308-316.	3.6	12
9	Neurological manifestations of severe acute respiratory syndrome coronavirus 2—a controversy â€~gone viral'. Brain Communications, 2020, 2, fcaa149.	3.3	7
10	Secretome Analysis of Mesenchymal Stem Cell Factors Fostering Oligodendroglial Differentiation of Neural Stem Cells In Vivo. International Journal of Molecular Sciences, 2020, 21, 4350.	4.1	16
11	Cryptococcal meningoencephalitis in an IgG2-deficient patient with multiple sclerosis on fingolimod therapy for more than five years – case report. BMC Neurology, 2020, 20, 158.	1.8	18
12	Meeting report: "Human endogenous retroviruses: HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancerâ€; Lyon, France, november 5th and 6th 2019 – an MS scientist's digest. Multiple Sclerosis and Related Disorders, 2020, 42, 102068.	2.0	4
13	Human endogenous retroviruses: ammunition for myeloid cells in neurodegenerative diseases?. Neural Regeneration Research, 2020, 15, 1043.	3.0	5
14	The Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells, 2019, 8, 825.	4.1	71
15	An unmet clinical need: roads to remyelination in MS. Neurological Research and Practice, 2019, 1, 21.	2.0	19
16	Neural Cell Responses Upon Exposure to Human Endogenous Retroviruses. Frontiers in Genetics, 2019, 10, 655.	2.3	17
17	Drug Treatment of Clinically Isolated Syndrome. CNS Drugs, 2019, 33, 659-676.	5.9	12
18	pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15216-15225.	7.1	78

DAVID KREMER

#	Article	IF	CITATIONS
19	Reply to Ruprecht and Mayer: Unearthing genomic fossils in the pathogenesis of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19793-19794.	7.1	6
20	Remyelination in multiple sclerosis: from concept to clinical trials. Current Opinion in Neurology, 2019, 32, 378-384.	3.6	28
21	Managing Risks with Immune Therapies in Multiple Sclerosis. Drug Safety, 2019, 42, 633-647.	3.2	18
22	Rescuing the negative impact of human endogenous retrovirus envelope protein on oligodendroglial differentiation and myelination. Glia, 2019, 67, 160-170.	4.9	31
23	Current advancements in promoting remyelination in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 7-14.	3.0	41
24	ECTRIMS/ACTRIMS 2017: Closing in on neurorepair in progressive multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 696-700.	3.0	4
25	Teriflunomide promotes oligodendroglial differentiation and myelination. Journal of Neuroinflammation, 2018, 15, 76.	7.2	37
26	Drug repurposing for neuroregeneration in multiple sclerosis. Neural Regeneration Research, 2018, 13, 1366.	3.0	10
27	Prehistoric enemies within: The contribution of human endogenous retroviruses to neurological diseases. Meeting report: "Second International Workshop on Human Endogenous Retroviruses and Diseaseâ€, Washington DC, March 13th and 14th 2017. Multiple Sclerosis and Related Disorders, 2017, 15, 18-23.	2.0	4
28	CXCR7 Is Involved in Human Oligodendroglial Precursor Cell Maturation. PLoS ONE, 2016, 11, e0146503.	2.5	18
29	Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends in Neurosciences, 2016, 39, 246-263.	8.6	82
30	Promoting remyelination in multiple sclerosis: Current drugs and future prospects. Multiple Sclerosis Journal, 2015, 21, 541-549.	3.0	63
31	Oligodendroglial Maturation Is Dependent on Intracellular Protein Shuttling. Journal of Neuroscience, 2015, 35, 906-919.	3.6	34
32	The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade. Multiple Sclerosis Journal, 2015, 21, 1200-1203.	3.0	54
33	Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Annals of Neurology, 2013, 74, 721-732.	5.3	155
34	The complex world of oligodendroglial differentiation inhibitors. Annals of Neurology, 2011, 69, 602-618.	5.3	119
35	p57kip2 is dynamically regulated in experimental autoimmune encephalomyelitis and interferes with oligodendroglial maturation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9087-9092.	7.1	46