Enrique MartÃ-nez de la Ossa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/102448/publications.pdf

Version: 2024-02-01

153 papers

4,587 citations

36 h-index 59 g-index

155 all docs

155 docs citations

155 times ranked 3779 citing authors

#	Article	IF	CITATIONS
1	An Attempt to Optimize Supercritical CO2 Polyaniline-Polycaprolactone Foaming Processes to Produce Tissue Engineering Scaffolds. Polymers, 2022, 14, 488.	4.5	7
2	Development of Porous Polyvinyl Acetate/Polypyrrole/Gallic Acid Scaffolds Using Supercritical CO2 as Tissue Regenerative Agents. Polymers, 2022, 14, 672.	4. 5	4
3	Application of Citrus By-Products in the Production of Active Food Packaging. Antioxidants, 2022, 11, 738.	5.1	7
4	Co-precipitation of grape residue extract using sub- and supercritical CO2 technology. Journal of CO2 Utilization, 2022, 61, 102010.	6.8	3
5	Hybridization of supercritical water oxidation and gasification processes at pilot plant scale. Journal of Supercritical Fluids, 2022, 186, 105609.	3.2	O
6	Supercritical Extraction of a Natural Pyrethrin-Rich Extract from Chrysanthemum Cinerariifolium Flowers to Be Impregnated into Polypropylene Films Intended for Agriculture Applications. AppliedChem, 2022, 2, $106-116$.	1.0	0
7	Valorization of unripe papaya for pectin recovery by conventional extraction and compressed fluids. Journal of Supercritical Fluids, 2021, 171, 105133.	3.2	4
8	Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants, 2021, 10, 216.	5.1	33
9	A comparative analysis on the impregnation efficiency of a natural insecticide into polypropylene films by means of batch against semi-continuous techniques using CO2 as solvent. Journal of Supercritical Fluids, 2021, 169, 105127.	3.2	6
10	Determining the Optimal Conditions for the Production by Supercritical CO2 of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment. Polymers, 2021, 13, 1645.	4 . 5	9
11	Supercritical Impregnation of Ketoprofen into Polylactic Acid for Biomedical Application: Analysis and Modeling of the Release Kinetic. Polymers, 2021, 13, 1982.	4.5	15
12	Supercritical Impregnation of PLA Filaments with Mango Leaf Extract to Manufacture Functionalized Biomedical Devices by 3D Printing. Polymers, 2021, 13, 2125.	4. 5	15
13	Potential Use of Annona Genus Plants Leaf Extracts to Produce Bioactive Transdermal Patches by Supercritical Solvent Impregnation. Antioxidants, 2021, 10, 1196.	5.1	2
14	Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocolloids, 2021, 117, 106709.	10.7	52
15	Effect of the Heating Rate to Prevent the Generation of Iron Oxides during the Hydrothermal Synthesis of LiFePO4. Nanomaterials, 2021, 11, 2412.	4.1	3
16	Development of functionalized alginate dressing with mango polyphenols by supercritical technique to be employed as an antidiabetic transdermal system. Journal of Supercritical Fluids, 2021, 175, 105274.	3.2	5
17	Supercritical solvent impregnation of alginate wound dressings with mango leaves extract. Journal of Supercritical Fluids, 2021, 178, 105357.	3.2	8
18	Health-Promoting Properties of Borage Seed Oil Fractionated by Supercritical Carbon Dioxide Extraction. Foods, 2021, 10, 2471.	4.3	8

#	Article	IF	CITATIONS
19	Deposition of CAP/Antioxidants Systems on Silica Particles Using the Supercritical Antisolvent Process. Applied Sciences (Switzerland), 2020, 10, 4576.	2.5	2
20	Synthesis of Micro- and Nanoparticles in Sub- and Supercritical Water: From the Laboratory to Larger Scales. Applied Sciences (Switzerland), 2020, 10, 5508.	2.5	4
21	Analysis of the Supercritical Water Gasification of Cellulose in a Continuous System Using Short Residence Times. Applied Sciences (Switzerland), 2020, 10, 5185.	2.5	16
22	Study by NMR of Liquid-Phase Alkylation of Toluene with Hex-1-ene: Effect of Catalyst on Selectivity. Petroleum Chemistry, 2020, 60, 810-817.	1.4	1
23	Selective Ring Opening of Ethylbenzene on Bifunctional Catalyst Pt–Ir over Hierarchical USY Zeolite. Petroleum Chemistry, 2020, 60, 104-112.	1.4	1
24	FoamingÂ+Âlmpregnation One-Step Process Using Supercritical CO2. , 2020, , .		0
25	Co-precipitation of fluorescein with extracts of mango leaves by supercritical antisolvent process. Journal of Supercritical Fluids, 2020, 162, 104857.	3.2	5
26	Selective fractionation and isolation of allelopathic compounds from Helianthus annuus L. leaves by means of high-pressure techniques. Journal of Supercritical Fluids, 2019, 143, 32-41.	3.2	26
27	Supercritical CO2 impregnation of silica microparticles with quercetin. Journal of Supercritical Fluids, 2019, 143, 157-161.	3.2	21
28	Foaming of Polycaprolactone and Its Impregnation with Quercetin Using Supercritical CO2. Polymers, 2019, 11, 1390.	4.5	17
29	Supercritical impregnation of olive leaf extract to obtain bioactive films effective in cherry tomato preservation. Food Packaging and Shelf Life, 2019, 21, 100338.	7.5	27
30	Precipitation of powerful antioxidant nanoparticles from orange leaves by means of supercritical CO2. Journal of CO2 Utilization, 2019, 31, 235-243.	6.8	12
31	Mean Aspects Controlling Supercritical CO2 Precipitation Processes. , 2019, , .		1
32	Production of submicron particles of the antioxidants of mango leaves/PVP by supercritical antisolvent extraction process. Journal of Supercritical Fluids, 2019, 143, 294-304.	3.2	23
33	Effect of supercritical CO2 and olive leaf extract on the structural, thermal and mechanical properties of an impregnated food packaging film. Journal of Supercritical Fluids, 2019, 145, 181-191.	3.2	16
34	Generation of potent antioxidant nanoparticles from mango leaves by supercritical antisolvent extraction. Journal of Supercritical Fluids, 2018, 138, 92-101.	3.2	17
35	Low power static-heating start-up procedure for supercritical water oxidation plants. Journal of Supercritical Fluids, 2018, 135, 218-224.	3.2	4
36	Supercritical impregnation of antioxidant mango polyphenols into a multilayer PET/PP food-grade film. Journal of CO2 Utilization, 2018, 25, 56-67.	6.8	43

#	Article	IF	CITATIONS
37	Hydrogen production by catalytic conversion of olive mill wastewater in supercritical water. Journal of Supercritical Fluids, 2018, 141, 224-229.	3.2	20
38	New insights into the formation of submicron silica particles using CO2 as anti-solvent. Journal of Supercritical Fluids, 2018, 133, 218-224.	3.2	4
39	Supercritical Water Oxidation. , 2018, , 333-358.		7
40	Characterization of olive leaf extract polyphenols loaded by supercritical solvent impregnation into PET/PP food packaging films. Journal of Supercritical Fluids, 2018, 140, 196-206.	3.2	43
41	Development of cotton fabric impregnated with antioxidant mango polyphenols by means of supercritical fluids. Journal of Supercritical Fluids, 2018, 140, 310-319.	3.2	22
42	Impregnation of mesoporous silica with mangiferin using supercritical CO2. Journal of Supercritical Fluids, 2018, 140, 129-136.	3.2	14
43	Generation of quercetin/cellulose acetate phthalate systems for delivery by supercritical antisolvent process. European Journal of Pharmaceutical Sciences, 2017, 100, 79-86.	4.0	40
44	Impregnation of mango leaf extract into a polyester textile using supercritical carbon dioxide. Journal of Supercritical Fluids, 2017, 128, 208-217.	3.2	48
45	Co-precipitation of mangiferin with cellulose acetate phthalate by Supercritical antisolvent process. Journal of CO2 Utilization, 2017, 22, 197-207.	6.8	19
46	Selective antitumoural action of pressurized mango leaf extracts against minimally and highly invasive breast cancer. Food and Function, 2017, 8, 3610-3620.	4.6	15
47	Micronization of vanillin by rapid expansion of supercritical solutions process. Journal of CO2 Utilization, 2017, 21, 169-176.	6.8	34
48	Temperature control in a supercritical water oxidation reactor: Assessing strategies for highly concentrated wastewaters. Journal of Supercritical Fluids, 2017, 119, 72-80.	3.2	11
49	Supercritical water gasification: a patents review. Reviews in Chemical Engineering, 2017, 33, .	4.4	20
50	Precipitation of mango leaves antioxidants by supercritical antisolvent process. Journal of Supercritical Fluids, 2017, 128, 218-226.	3.2	24
51	Supercritical impregnation of food packaging films to provide antioxidant properties. Journal of Supercritical Fluids, 2017, 128, 200-207.	3.2	53
52	Depressurization System by Coiled Pipes Applied to a High Pressure Process: Experimental Results and Modeling. Open Chemical Engineering Journal, 2017, 11, 17-32.	0.5	0
53	Generation of microparticles of ellagic acid by supercritical antisolvent process. Journal of Supercritical Fluids, 2016, 116, 101-110.	3.2	29
54	Pilot-plant scale extraction of phenolic compounds from mango leaves using different green techniques: Kinetic and scale up study. Chemical Engineering Journal, 2016, 299, 420-430.	12.7	61

#	Article	IF	CITATIONS
55	Simulation of supercritical water oxidation reactor in transitory state: Application to time-dependent processes. Journal of Supercritical Fluids, 2016, 117, 219-229.	3.2	10
56	Precipitation of submicron particles of rutin using supercritical antisolvent process. Journal of Supercritical Fluids, 2016, 118, 1-10.	3.2	39
57	Use of supercritical methanol/carbon dioxide mixtures for biodiesel production. Korean Journal of Chemical Engineering, 2016, 33, 2342-2349.	2.7	12
58	Mangiferin nanoparticles precipitation by supercritical antisolvent process. Journal of Supercritical Fluids, 2016, 112, 44-50.	3.2	49
59	Preparation of polyphenol fine particles potent antioxidants by a supercritical antisolvent process using different extracts of Olea europaea leaves. Korean Journal of Chemical Engineering, 2016, 33, 594-602.	2.7	11
60	Filter Cake Oil-Wax as Raw Material for the Production of Biodiesel: Analysis of the Extraction Process and the Transesterification Reaction. Journal of Chemistry, 2015, 2015, 1-9.	1.9	8
61	Screening design of experiment applied to the supercritical antisolvent precipitation of quercetin. Journal of Supercritical Fluids, 2015, 104, 10-18.	3.2	16
62	Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules, 2015, 20, 9686-9702.	3.8	91
63	Isolation of Bioactive Compounds from Sunflower Leaves (<i>Helianthus annuus</i> L.) Extracted with Supercritical Carbon Dioxide. Journal of Agricultural and Food Chemistry, 2015, 63, 6410-6421.	5.2	34
64	Particle design applied to quercetin using supercritical anti-solvent techniques. Journal of Supercritical Fluids, 2015, 105, 119-127.	3.2	37
65	Natural antioxidant fine particles recovery from Eucalyptus globulus leaves using supercritical carbon dioxide assisted processes. Journal of Supercritical Fluids, 2015, 101, 161-169.	3.2	22
66	Use of high pressure techniques to produce Mangifera indica L. leaf extracts enriched in potent antioxidant phenolic compounds. Innovative Food Science and Emerging Technologies, 2015, 29, 94-106.	5.6	67
67	Helikaurolides A–D with a Diterpene-Sesquiterpene Skeleton from Supercritical Fluid Extracts of <i>Helianthus annuus</i> L. var. Arianna. Organic Letters, 2015, 17, 4730-4733.	4.6	12
68	Precipitation of antioxidant fine particles from Olea europaea leaves using supercritical antisolvent process. Journal of Supercritical Fluids, 2015, 97, 125-132.	3.2	31
69	Supercritical Water Gasification of Organic Wastes for Energy Generation. , 2014, , 191-200.		4
70	Supercritical Water Oxidation for Wastewater Destruction with Energy Recovery., 2014, , 181-190.		9
71	New Insights into Acrylic Polymer Precipitation by Supercritical Fluids. Chemical Engineering and Technology, 2014, 37, 141-148.	1.5	7
72	Polymer encapsulation of amoxicillin microparticles by SAS process. Journal of Microencapsulation, 2014, 31, 16-22.	2.8	8

#	Article	IF	CITATIONS
73	Polymer–naproxen precipitation by supercritical antisolvent (SAS) process. Journal of Supercritical Fluids, 2014, 89, 58-67.	3.2	26
74	Fractionation of Mangifera indica Linn polyphenols by reverse phase supercritical fluid chromatography (RP-SFC) at pilot plant scale. Journal of Supercritical Fluids, 2014, 95, 444-456.	3.2	12
75	Ibuprofen–polymer precipitation using supercritical CO2 at low temperature. Journal of Supercritical Fluids, 2014, 94, 91-101.	3.2	28
76	Exploring High Operating Conditions in the Ibuprofen Precipitation by Rapid Expansion of Supercritical Solutions Process. Industrial & Engineering Chemistry Research, 2014, 53, 474-480.	3.7	20
77	Kinetics of supercritical water oxidation of isopropanol as an auxiliary fuel and co-fuel. Fuel, 2013, 111, 574-583.	6.4	52
78	Silica microparticles precipitation by two processes using supercritical fluids. Journal of Supercritical Fluids, 2013, 75, 88-93.	3.2	13
79	Processing naproxen with supercritical CO2. Journal of Supercritical Fluids, 2013, 75, 21-29.	3.2	34
80	Amoxicillin and Ethyl Cellulose Precipitation by Two Supercritical Antisolvent Processes. Chemical Engineering and Technology, 2013, 36, 665-672.	1.5	8
81	Supercritical CO2 precipitation of poly(l-lactic acid) in a wide range of miscibility. Journal of Supercritical Fluids, 2013, 81, 236-244.	3.2	24
82	Allelopathic properties of the fractions obtained from sunflower leaves using supercritical carbon dioxide: The effect of co-solvent addition. Journal of Supercritical Fluids, 2013, 82, 221-229.	3.2	4
83	Problems in Supercritical Water Oxidation Process and Proposed Solutions. Industrial & Engineering Chemistry Research, 2013, 52, 7617-7629.	3.7	125
84	Quality of Cosmetic Argan Oil Extracted by Supercritical Fluid Extraction from <i>Argania spinosa </i> L Journal of Chemistry, 2013, 2013, 1-9.	1.9	17
85	High Pressure Extraction of Antioxidants from Solanum stenotomun Peel. Molecules, 2013, 18, 3137-3151.	3.8	33
86	Oxidant Multi-Injection in Supercritical Water Oxidation of Wastewaters. Procedia Engineering, 2012, 42, 1326-1334.	1.2	4
87	Extraction of antioxidant compounds from different varieties of Mangifera indica leaves using green technologies. Journal of Supercritical Fluids, 2012, 72, 168-175.	3.2	95
88	New feed system for water-insoluble organic and/or highly concentrated wastewaters in the supercritical water oxidation process. Journal of Supercritical Fluids, 2012, 72, 263-269.	3.2	17
89	Supercritical Antisolvent Precipitation of Ethyl Cellulose. Particulate Science and Technology, 2012, 30, 424-430.	2.1	11
90	Polymer and ampicillin co-precipitation by supercritical antisolvent process. Journal of Supercritical Fluids, 2012, 63, 92-98.	3.2	31

#	Article	IF	Citations
91	Supercritical Antisolvent Precipitation of Ampicillin in Complete Miscibility Conditions. Industrial & Lamp; Engineering Chemistry Research, 2011, 50, 2343-2347.	3.7	20
92	Simulation of Real Wastewater Supercritical Water Oxidation at High Concentration on a Pilot Plant Scale. Industrial & Engineering Chemistry Research, 2011, 50, 12512-12520.	3.7	22
93	Supercritical Water Oxidation of Oily Wastes at Pilot Plant: Simulation for Energy Recovery. Industrial & Damp; Engineering Chemistry Research, 2011, 50, 775-784.	3.7	36
94	Identification of Major Compounds Extracted by Supercritical Fluids from <i>Helianthus Annuus L</i>	0.4	3
95	Co-precipitation of amoxicillin and ethyl cellulose microparticles by supercritical antisolvent process. Journal of Supercritical Fluids, 2011, 60, 75-80.	3.2	36
96	Potential allelopathic of the fractions obtained from sunflower leaves using supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 60, 28-37.	3.2	14
97	Supercritical water oxidation of flammable industrial wastewaters: economic perspectives of an industrial plant. Journal of Chemical Technology and Biotechnology, 2011, 86, 1049-1057.	3.2	32
98	Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide. Journal of Food Engineering, 2010, 96, 304-308.	5.2	128
99	Screening design of experiment applied to supercritical antisolvent precipitation of amoxicillin: Exploring new miscible conditions. Journal of Supercritical Fluids, 2010, 51, 399-403.	3.2	27
100	Simulation of Supercritical Water Oxidation with Air at Pilot Plant Scale. International Journal of Chemical Reactor Engineering, 2010, 8 , .	1.1	4
101	Supercritical Antisolvent Process Applied to the Pharmaceutical Industry. Particulate Science and Technology, 2010, 28, 262-266.	2.1	8
102	SFE kinetics of bioactive compounds from Helianthus annuus L Journal of Separation Science, 2009, 32, 1445-1453.	2.5	9
103	Extraction of natural compounds with biological activity from sunflower leaves using supercritical carbon dioxide. Chemical Engineering Journal, 2009, 152, 301-306.	12.7	33
104	Supercritical CO2 extraction of PAHs on spiked soil. Journal of Hazardous Materials, 2009, 162, 777-784.	12.4	12
105	Remediation of PAH spiked soils: Concentrated H2O2 treatment/continuous hot water extraction–oxidation. Journal of Hazardous Materials, 2009, 168, 1359-1365.	12.4	15
106	Kinetics of the supercritical fluid extraction of carotenoids from microalgae with CO2 and ethanol as cosolvent. Chemical Engineering Journal, 2009, 150, 104-113.	12.7	74
107	On the Selection of Limiting Hydrodynamic Conditions for the Supercritical AntiSolvent (SAS) Process. Industrial & Engineering Chemistry Research, 2009, 48, 9224-9232.	3.7	18
108	Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta, 2009, 77, 948-952.	5.5	207

#	Article	IF	CITATIONS
109	Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. Journal of Separation Science, 2008, 31, 1352-1362.	2.5	112
110	Kinetic model for oxygen concentration dependence in the supercritical water oxidation of an industrial wastewater. Chemical Engineering Journal, 2008, 144, 361-367.	12.7	33
111	Screening design of experiment applied to supercritical antisolvent precipitation of amoxicillin. Journal of Supercritical Fluids, 2008, 44, 230-237.	3.2	16
112	Supercritical fluid extraction of bioactive compounds from sunflower leaves with carbon dioxide and water on a pilot plant scale. Journal of Supercritical Fluids, 2008, 45, 37-42.	3.2	40
113	Supercritical water gasification of industrial organic wastes. Journal of Supercritical Fluids, 2008, 46, 329-334.	3.2	93
114	Anaerobic digestion kinetics of wine-distilleries wastewaters. Journal of Chemical Technology and Biotechnology, 2007, 45, 147-162.	3.2	13
115	Ethanol + 2-Methyl-1-butanol + Calcium Chloride System:Â Vaporâ-Liquid Equilibrium Data and Correlation Using the NRTL Electrolyte Model. Journal of Chemical & Degineering Data, 2007, 52, 458-462.	1.9	3
116	Relative Importance of the Operating Conditions Involved in the Formation of Nanoparticles of Ampicillin by Supercritical Antisolvent Precipitation. Industrial & Engineering Chemistry Research, 2007, 46, 114-123.	3.7	50
117	Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp Journal of Supercritical Fluids, 2007, 39, 323-329.	3.2	155
118	Effect of the addition of cosolvent on the supercritical fluid extraction of bioactive compounds from Helianthus annuus L Journal of Supercritical Fluids, 2007, 41, 43-49.	3.2	53
119	Hydrothermal oxidation: Application to the treatment of different cutting fluid wastes. Journal of Hazardous Materials, 2007, 144, 639-644.	12.4	58
120	Controlled submicro particle formation of ampicillin by supercritical antisolvent precipitation. Journal of Supercritical Fluids, 2007, 40, 308-316.	3.2	60
121	Kinetics and Mechanism of Wet Air Oxidation of Butyric Acid. Industrial & Engineering Chemistry Research, 2006, 45, 4117-4122.	3.7	10
122	Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 2005, 66, 245-251.	5.2	185
123	Thermodynamic modelling of supercritical fluid–solid phase equilibrium data. Computers and Chemical Engineering, 2005, 29, 1885-1890.	3.8	17
124	Solubility estimations for Disperse Blue 14 in supercritical carbon dioxide. Dyes and Pigments, 2005, 67, 167-173.	3.7	31
125	REVIEW OF THE MAIN METHODS OF CRITICAL PARAMETER ESTIMATION: APPLICATION TO THE CORRELATION OF PALMITIC ACID / SUPERCRITICAL CARBON DIOXIDE PHASE EQUILIBRIUM DATA. Reviews in Chemical Engineering, 2005, 21, .	4.4	4
126	Supercritical CO2 Extraction of \hat{l}^2 -Carotene from a Marine Strain of the Cyanobacterium Synechococcus Species. Journal of Agricultural and Food Chemistry, 2005, 53, 9701-9707.	5.2	59

#	Article	IF	Citations
127	Effect of the pre-treatment of the samples on the natural substances extraction from L. using supercritical carbon dioxide. Talanta, 2005, 67, 175-181.	5.5	18
128	Estimation of the diffusion coefficient of a model food dye (malvidin 3,5-diglucoside) in a high pressure CO2+methanol system. Journal of Supercritical Fluids, 2004, 29, 165-173.	3.2	12
129	Wet air oxidation of long-chain carboxylic acids. Chemical Engineering Journal, 2004, 100, 43-50.	12.7	22
130	Supercritical Fluidâ^'Solid Phase Equilibria Calculations by Cubic Equations of State and Empirical Equations:  Application to the Palmitic Acid + Carbon Dioxide System. Journal of Chemical & Engineering Data, 2004, 49, 435-438.	1.9	18
131	Effect of Addition of Calcium Chloride on Vapor Pressure of 2-Methyl-1-butanol. Journal of Chemical & Engineering Data, 2004, 49, 407-410.	1.9	4
132	A Screening Analysis of the High-Pressure Extraction of Anthocyanins from Red Grape Pomace with Carbon Dioxide and Cosolvent. Engineering in Life Sciences, 2003, 3, 38-42.	3.6	35
133	Hydrothermal Oxidation of Oily Wastes: an Alternative to Conventional Treatment Methods. Engineering in Life Sciences, 2003, 3, 85-89.	3.6	10
134	Measurement of the diffusion coefficient of a model food dye (malvidin 3,5-diglucoside) in a high pressure CO2+methanol system by the chromatographic peak-broadening technique. Journal of Supercritical Fluids, 2003, 25, 57-68.	3.2	32
135	Measurement and correlation of solubility of Disperse Blue 14 in supercritical carbon dioxide. Journal of Supercritical Fluids, 2003, 27, 31-37.	3.2	45
136	Kinetics and Mathematical Modeling of Anthocyanin Extraction with Carbon Dioxide and Methanol at High Pressure. Separation Science and Technology, 2003, 38, 3689-3712.	2.5	17
137	Vaporâ^'Liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System. Journal of Chemical & Engineering Data, 2003, 48, 14-17.	1.9	9
138	Quality of borage seed oil extracted by liquid and supercritical carbon dioxide. Chemical Engineering Journal, 2002, 88, 103-109.	12.7	60
139	Supercritical fluid extraction of borage (Borago officinalis L.) seeds with pure CO2 and its mixture with caprylic acid methyl ester. Journal of Supercritical Fluids, 2002, 22, 211-219.	3.2	20
140	Supercritical fluid extraction of tocopherol concentrates from olive tree leaves. Journal of Supercritical Fluids, 2002, 22, 221-228.	3.2	112
141	Semi-batch extraction of anthocyanins from red grape pomace in packed beds: experimental results and process modelling. Chemical Engineering Science, 2002, 57, 3831-3838.	3.8	37
142	Characterisation and Process Development of Supercritical Fluid Extraction of Soybean Oil. Food Science and Technology International, 2002, 8, 337-342.	2.2	36
143	A Semiempirical Equation for Vaporâ^'Liquid Equilibrium in Waterâ^'Acetic Acidâ^'Calcium Chloride Systems. Journal of Chemical & Engineering Data, 2001, 46, 188-192.	1.9	12
144	Elimination of cutting oil wastes by promoted hydrothermal oxidation. Journal of Hazardous Materials, 2001, 88, 95-106.	12.4	67

#	Article	IF	CITATIONS
145	Generalized kinetic models for supercritical water oxidation of cutting oil wastes. Journal of Supercritical Fluids, 2001, 21, 135-145.	3.2	43
146	Kinetic comparison between subcritical and supercritical water oxidation of phenol. Chemical Engineering Journal, 2001, 81, 287-299.	12.7	88
147	Wet air oxidation of oily wastes generated aboard ships: kinetic modeling. Journal of Hazardous Materials, 1999, 67, 61-73.	12.4	29
148	Solubility of the antibiotic Penicillin G in supercritical carbon dioxide. Journal of Supercritical Fluids, 1999, 15, 183-190.	3.2	154
149	Kinetics of wet air oxidation of phenol. Chemical Engineering Journal, 1997, 67, 115-121.	12.7	34
150	Dynamic supercritical CO2 extraction for removal of cholesterol from anhydrous milk fat. International Journal of Food Science and Technology, 1996, 31, 143-151.	2.7	20
151	Determination of cholesterol in milk fat by supercritical fluid chromatography. Journal of Chromatography A, 1995, 715, 333-336.	3.7	24
152	Binary and ternary phase behaviour of the system water-ethanol-carbon dioxide. Fluid Phase Equilibria, 1990, 56, 325-340.	2.5	25
153	Aerobic treatment of wine-distillery wastewaters. Bulletin of Environmental Contamination and Toxicology, 1987, 38, 9-14.	2.7	1