## Bingzhang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10243704/publications.pdf Version: 2024-02-01



RINCZHANC LU

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Carbonâ€Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage.<br>Advanced Materials, 2018, 30, e1801995.                                                                                                              | 11.1 | 479       |
| 2  | Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nature Communications, 2019, 10, 631.                                                                                                   | 5.8  | 423       |
| 3  | Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. ACS Catalysis, 2020, 10, 7584-7618.                                                                                                                                         | 5.5  | 274       |
| 4  | Graphitic Nitrogen Is Responsible for Oxygen Electroreduction on Nitrogen-Doped Carbons in<br>Alkaline Electrolytes: Insights from Activity Attenuation Studies and Theoretical Calculations. ACS<br>Catalysis, 2018, 8, 6827-6836.                | 5.5  | 188       |
| 5  | Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets. Journal of Materials Chemistry A, 2017, 5, 18261-18269.                                                                                      | 5.2  | 136       |
| 6  | Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type<br>electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Applied Catalysis B:<br>Environmental, 2022, 302, 120838.             | 10.8 | 124       |
| 7  | Theoryâ€Guided Regulation of FeN <sub>4</sub> Spin State by Neighboring Cu Atoms for Enhanced<br>Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie - International<br>Edition, 2022, 61, .                      | 7.2  | 93        |
| 8  | Nitrogen and Iron-Codoped Carbon Hollow Nanotubules as High-Performance Catalysts toward<br>Oxygen Reduction Reaction: A Combined Experimental and Theoretical Study. Chemistry of Materials,<br>2017, 29, 5617-5628.                              | 3.2  | 92        |
| 9  | An Efficient Strategy for Boosting Photogenerated Charge Separation by Using Porphyrins as<br>Interfacial Charge Mediators. Angewandte Chemie - International Edition, 2019, 58, 16800-16805.                                                      | 7.2  | 80        |
| 10 | Organically Capped Iridium Nanoparticles as High-Performance Bifunctional Electrocatalysts for Full<br>Water Splitting in Both Acidic and Alkaline Media: Impacts of Metal–Ligand Interfacial Interactions.<br>ACS Catalysis, 2021, 11, 1179-1188. | 5.5  | 65        |
| 11 | Impacts of interfacial charge transfer on nanoparticle electrocatalytic activity towards oxygen reduction. Physical Chemistry Chemical Physics, 2017, 19, 9336-9348.                                                                               | 1.3  | 49        |
| 12 | Oxygen Reduction Reaction Catalyzed by Black-Phosphorus-Supported Metal Nanoparticles: Impacts of<br>Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2019, 11, 24707-24714.                                                       | 4.0  | 33        |
| 13 | Nanowrinkled Carbon Aerogels Embedded with FeNx Sites as Effective Oxygen Electrodes for Rechargeable Zinc-Air Battery. Research, 2019, 2019, 6813585.                                                                                             | 2.8  | 29        |
| 14 | Stabilization of Undercoordinated Cu Sites in Strontium Copper Oxides for Enhanced Formation of<br>C <sub>2+</sub> Products in Electrochemical CO <sub>2</sub> Reduction. ACS Catalysis, 2022, 12,<br>6663-6671.                                   | 5.5  | 28        |
| 15 | Rapid preparation of carbonâ€supported ruthenium nanoparticles by magnetic induction heating for efficient hydrogen evolution reaction in both acidic and alkaline media. SusMat, 2022, 2, 335-346.                                                | 7.8  | 21        |
| 16 | Point of Anchor: Impacts on Interfacial Charge Transfer of Metal Oxide Nanoparticles. Journal of the<br>American Chemical Society, 2018, 140, 15290-15299.                                                                                         | 6.6  | 18        |
| 17 | Nitrogenâ€Đoped Porous Carbon Cages for Electrocatalytic Reduction of Oxygen: Enhanced<br>Performance with Iron and Cobalt Dual Metal Centers. ChemCatChem, 2020, 12, 3230-3239.                                                                   | 1.8  | 18        |
| 18 | Oxygen Reduction Reaction Catalyzed by Carbon-Supported Platinum Few-Atom Clusters: Significant Enhancement by Doping of Atomic Cobalt. Research, 2020, 2020, 9167829.                                                                             | 2.8  | 18        |

Bingzhang Lu

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ethanol Oxidation Reaction Catalyzed by Palladium Nanoparticles Supported on Hydrogenâ€Treated TiO<br>2 Nanobelts: Impact of Oxygen Vacancies. ChemElectroChem, 2017, 4, 2211-2217.           | 1.7  | 9         |
| 20 | An Efficient Strategy for Boosting Photogenerated Charge Separation by Using Porphyrins as<br>Interfacial Charge Mediators. Angewandte Chemie, 2019, 131, 16956-16961.                        | 1.6  | 8         |
| 21 | Theoryâ€Guided Regulation of FeN <sub>4</sub> Spin State by Neighboring Cu Atoms for Enhanced<br>Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie, 0, , . | 1.6  | 8         |
| 22 | Ultrafast Preparation of Nonequilibrium FeNi Spinels by Magnetic Induction Heating for<br>Unprecedented Oxygen Evolution Electrocatalysis. Research, 2022, 2022, .                            | 2.8  | 7         |
| 23 | Single Atom Catalysts: Carbon‣upported Single Atom Catalysts for Electrochemical Energy<br>Conversion and Storage(Adv. Mater. 48/2018). Advanced Materials, 2018, 30, 1870370.                | 11.1 | 6         |
| 24 | Oxygen reduction reaction catalyzed by carbon composites with ruthenium-doped iron oxide nanoparticles. Materials Advances, 2022, 3, 4556-4565.                                               | 2.6  | 1         |