Qiangqiang Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1024292/publications.pdf

Version: 2024-02-01

45317 57758 8,426 138 44 90 citations h-index g-index papers 140 140 140 5607 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Fast and Effective Irregular Stripe Removal Method for Moon Mineralogy Mapper (M ³). IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-19.	6.3	5
2	Satellite Video Super-Resolution via Multiscale Deformable Convolution Alignment and Temporal Grouping Projection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-19.	6.3	55
3	A Locally Weighted Neural Network Constrained by Global Training for Remote Sensing Estimation of PMâ,,.â, IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	9
4	Spatial–Temporal Gray-Level Co-Occurrence Aware CNN for SAR Image Change Detection. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	4
5	Spatiotemporal estimation of hourly 2-km ground-level ozone over China based on Himawari-8 using a self-adaptive geospatially local model. Geoscience Frontiers, 2022, 13, 101286.	8.4	26
6	Spectral Response Function-Guided Deep Optimization-Driven Network for Spectral Super-Resolution. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 4213-4227.	11.3	40
7	A Dual-UNet With Multistage Details Injection for Hyperspectral Image Fusion. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	15
8	One-Step High-Quality NDVI Time-Series Reconstruction by Joint Modeling of Gradual Vegetation Change and Negatively Biased Atmospheric Contamination. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	3
9	Coupling Dual Graph Convolution Network and Residual Network for Local Climate Zone Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 1221-1234.	4.9	6
10	Self-Supervised Pansharpening Based on a Cycle-Consistent Generative Adversarial Network. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	10
11	Low-Resolution Fully Polarimetric SAR and High-Resolution Single-Polarization SAR Image Fusion Network. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	5
12	Multivehicle Object Tracking in Satellite Video Enhanced by Slow Features and Motion Features. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-26.	6.3	9
13	Robust Thick Cloud Removal for Multitemporal Remote Sensing Images Using Coupled Tensor Factorization. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	9
14	Freeze/thaw onset detection combining SMAP and ASCAT data over Alaska: A machine learning approach. Journal of Hydrology, 2022, 605, 127354.	5.4	8
15	FDFNet: A Fusion Network for Generating High-Resolution Fully PolSAR Images. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	0
16	Downscaling of soil moisture products using deep learning: Comparison and analysis on Tibetan Plateau. Journal of Hydrology, 2022, 607, 127570.	5.4	25
17	Global validation and hybrid calibration of CAMS and MERRA-2 PM2.5 reanalysis products based on OpenAQ platform. Atmospheric Environment, 2022, 274, 118972.	4.1	18
18	Long-Term Variation of Greenhouse Gas N2O Observed by MLS during 2005–2020. Remote Sensing, 2022, 14, 955.	4.0	1

#	Article	IF	CITATIONS
19	Multispectral and SAR Image Fusion Based on Laplacian Pyramid and Sparse Representation. Remote Sensing, 2022, 14, 870.	4.0	11
20	Vertical Profile of Ozone Derived from Combined MLS and TES Satellite Observations. Remote Sensing, 2022, 14, 1588.	4.0	1
21	Space-time super-resolution for satellite video: A joint framework based on multi-scale spatial-temporal transformer. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102731.	2.8	37
22	Global spatiotemporal estimation of daily high-resolution surface carbon monoxide concentrations using Deep Forest. Journal of Cleaner Production, 2022, 350, 131500.	9.3	13
23	Spatiotemporal estimation of 6-hour high-resolution precipitation across China based on Himawari-8 using a stacking ensemble machine learning model. Journal of Hydrology, 2022, 609, 127718.	5.4	10
24	DsTer: A dense spectral transformer for remote sensing spectral super-resolution. International Journal of Applied Earth Observation and Geoinformation, 2022, 109, 102773.	1.9	5
25	Estimation of high spatial resolution ground-level ozone concentrations based on Landsat 8 TIR bands with deep forest model. Chemosphere, 2022, 301, 134817.	8.2	9
26	Ultrahigh-resolution PM2.5 estimation from top-of-atmosphere reflectance with machine learning: Theories, methods, and applications. Environmental Pollution, 2022, 306, 119347.	7.5	16
27	The Spatio-Temporal Reconstruction of Lake Water Levels Using Deep Learning Models: A Case Study on Altai Mountains. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4919-4940.	4.9	2
28	A Knowledge Optimization-Driven Network With Normalizer-Free Group ResNet Prior for Remote Sensing Image Pan-Sharpening. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	1
29	Coupling Model- and Data-Driven Methods for Remote Sensing Image Restoration and Fusion: Improving physical interpretability. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 231-249.	9.6	15
30	Investigating the spatio-temporal variation of vegetation water content in the western United States by blending GNSS-IR, AMSR-E, and AMSR2 observables using machine learning methods. Science of Remote Sensing, 2022, 6, 100061.	4.8	2
31	A Large-Scale Benchmark Data Set for Evaluating Pansharpening Performance: Overview and Implementation. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 18-52.	9.6	92
32	SAR Image Despeckling Employing a Recursive Deep CNN Prior. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 273-286.	6.3	45
33	Monitoring Recent Lake Variations Under Climate Change Around the Altai Mountains Using Multimission Satellite Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1374-1388.	4.9	8
34	Estimate hourly PM2.5 concentrations from Himawari-8 TOA reflectance directly using geo-intelligent long short-term memory network. Environmental Pollution, 2021, 271, 116327.	7.5	36
35	Physics-Based GAN With Iterative Refinement Unit for Hyperspectral and Multispectral Image Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6827-6841.	4.9	16
36	An LSTM-based neural network method of particulate pollution forecast in China. Environmental Research Letters, 2021, 16, 044006.	5.2	11

#	Article	IF	CITATIONS
37	Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019. Earth System Science Data, 2021, 13, 1385-1401.	9.9	42
38	Estimating daily full-coverage near surface O3, CO, and NO2 concentrations at a high spatial resolution over China based on S5P-TROPOMI and GEOS-FP. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175, 311-325.	11.1	57
39	Combined deep prior with low-rank tensor SVD for thick cloud removal in multitemporal images. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177, 161-173.	11.1	50
40	Global air quality change during COVID-19: a synthetic analysis of satellite, reanalysis and ground station data. Environmental Research Letters, 2021, 16, 074052.	5. 2	11
41	Radiometric quality improvement of hyperspectral remote sensing images: a technical tutorial on variational framework. Journal of Applied Remote Sensing, 2021, 15, .	1.3	6
42	A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 7711-7725.	6.3	50
43	Full-coverage spatiotemporal mapping of ambient PM2.5 and PM10 over China from Sentinel-5P and assimilated datasets: Considering the precursors and chemical compositions. Science of the Total Environment, 2021, 793, 148535.	8.0	23
44	A Recurrent Refinement Network for Satellite Video Super-Resolution., 2021,,.		2
45	Thick Cloud Removal for Sentinel-2 Time-Series Images via Combining Deep Prior and Low-Rank Tensor Completion. , 2021, , .		0
46	Enhanced 3D Convolution for Hyperspectral Image Super-Resolution. , 2021, , .		2
47	Unsupervised missing information reconstruction for single remote sensing image with Deep Code Regression. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102599.	2.8	6
48	Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S. Journal of Hydrology, 2020, 580, 124351.	5.4	61
49	Cloud Removal with Fusion of High Resolution Optical and SAR Images Using Generative Adversarial Networks. Remote Sensing, 2020, 12, 191.	4.0	85
50	Mapping PM2.5 concentration at high resolution using a cascade random forest based downscaling model: Evaluation and application. Journal of Cleaner Production, 2020, 277, 123887.	9.3	22
51	Cloud detection for Landsat imagery by combining the random forest and superpixels extracted via energy-driven sampling segmentation approaches. Remote Sensing of Environment, 2020, 248, 112005.	11.0	47
52	A Global Gravity Reconstruction Method for Mercury Employing Deep Convolutional Neural Network. Remote Sensing, 2020, 12, 2293.	4.0	2
53	Geographically and temporally weighted neural networks for satellite-based mapping of ground-level PM2.5. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167, 178-188.	11.1	55
54	Remote Sensing Estimation of Regional NO2 via Space-Time Neural Networks. Remote Sensing, 2020, 12, 2514.	4.0	27

#	Article	IF	CITATIONS
55	Can Terrestrial Restoration Methodologies be Transferred to Planetary Hyperspectral Imagery? A Quantitative Intercomparison and Discussion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 5759-5775.	4.9	1
56	Mapping PM2.5 concentration at a sub-km level resolution: A dual-scale retrieval approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165, 140-151.	11.1	27
57	Deep spatio-spectral Bayesian posterior for hyperspectral image non-i.i.d. noise removal. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164, 125-137.	11.1	40
58	Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162, 148-160.	11.1	92
59	Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 2020, 241, 111716.	11.0	744
60	Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions over China in 2015 by using modified geographically weighted regression. Environmental Pollution, 2020, 262, 114257.	7.5	37
61	A residual convolutional neural network for polarimetric SAR image super-resolution. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 90-108.	11.1	41
62	Scene-Adaptive Remote Sensing Image Super-Resolution Using a Multiscale Attention Network. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 4764-4779.	6.3	71
63	A differential information residual convolutional neural network for pansharpening. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163, 257-271.	11.1	43
64	Estimating snow depth by combining satellite data and ground-based observations over Alaska: A deep learning approach. Journal of Hydrology, 2020, 585, 124828.	5.4	25
65	A Validation Approach Considering the Uneven Distribution of Ground Stations for Satellite-Based PM _{2.5} Estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1312-1321.	4.9	38
66	Investigating multiple aerosol optical depth products from MODIS and VIIRS over Asia: Evaluation, comparison, and merging. Atmospheric Environment, 2020, 230, 117548.	4.1	20
67	Video Satellite Imagery Super Resolution for â€ʾJilin-1' via a Single-and-Multi Frame Ensembled Framework. , 2020, , .		4
68	Combined the Data-Driven with Model-Driven Stragegy: A Novel Framework for Mixed Noise Removal in Hyperspectral Image. , 2020, , .		1
69	Lunar Hyperspectral Image Destriping Method Using Low-Rank Matrix Recovery and Guided Profile. , 2020, , .		0
70	Data-Driven and Model-Driven Spectral Superresolution Algorithms: Combination, Analysis and Application for Classification. , 2020, , .		0
71	Recovery of the Carbon Monoxide Product from S5P-TROPOMI by Fusing Multiple Datasets: A Case Study in Hubei Province, China. , 2020, , .		0
72	Hybrid Noise Removal in Hyperspectral Imagery With a Spatial–Spectral Gradient Network. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7317-7329.	6.3	117

#	Article	IF	Citations
73	Antinoise Hyperspectral Image Fusion by Mining Tensor Low-Multilinear-Rank and Variational Properties. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7832-7848.	6.3	15
74	Spatial–Spectral Fusion by Combining Deep Learning and Variational Model. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 6169-6181.	6.3	60
75	Monitoring the Variation of Vegetation Water Content with Machine Learning Methods: Point–Surface Fusion of MODIS Products and GNSS-IR Observations. Remote Sensing, 2019, 11, 1440.	4.0	27
76	Large-scale MODIS AOD products recovery: Spatial-temporal hybrid fusion considering aerosol variation mitigation. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157, 1-12.	11.1	44
77	Missing Data Reconstruction for Remote Sensing Images With Weighted Low-Rank Tensor Model. IEEE Access, 2019, 7, 142339-142352.	4.2	3
78	Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces. Atmospheric Environment, 2019, 200, 280-301.	4.1	72
79	Hyperspectral image denoising with bilinear low rank matrix factorization. Signal Processing, 2019, 163, 132-152.	3.7	31
80	Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM2.5 in China During 1998–2016. International Journal of Environmental Research and Public Health, 2019, 16, 1149.	2.6	17
81	The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations. Environmental Pollution, 2019, 248, 526-535.	7.5	99
82	Validation of MODIS 1-Km MAIAC Aerosol Products with AERONET in China During 2008-2016., 2019,,.		0
83	Single Remote Sensing Image Dehazing Using a Prior-Based Dense Attentive Network. Remote Sensing, 2019, 11, 3008.	4.0	30
84	Estimating Snow-Depth by Fusing Satellite and Station Observations: A Deep Learning Approach. , 2019, , .		1
85	Downscaling GNSS-R Based Vegetation Water Content Product Using Random Forest Model. , 2019, , .		2
86	Polarimetric SAR Image Super-Resolution VIA Deep Convolutional Neural Network. , 2019, , .		8
87	Cloud removal with fusion of SAR and Optical Images by Deep Learning. , 2019, , .		2
88	Cloud and Shadow Removal for Sentinel-2 by Progressively Spatiotemporal Patch Group Learning. , 2019, , .		1
89	Differential Information Residual Convolutional Neural Network for Pansharpening., 2019,,.		0
90	Hyperspectral Image Denoising Employing a Spatial–Spectral Deep Residual Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 1205-1218.	6.3	322

#	Article	IF	Citations
91	Pansharpening for Cloud-Contaminated Very High-Resolution Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 2840-2854.	6.3	54
92	A Universal Destriping Framework Combining 1-D and 2-D Variational Optimization Methods. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 808-822.	6.3	43
93	Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 4274-4288.	6.3	283
94	A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 978-989.	4.9	374
95	Quality Improvement of Satellite Soil Moisture Products by Fusing with In-Situ Measurements and GNSS-R Estimates in the Western Continental U.S Remote Sensing, 2018, 10, 1351.	4.0	28
96	A Unified Spatial-Temporal-Spectral Learning Framework for Reconstructing Missing Data in Remote Sensing Images. , 2018, , .		3
97	Deep Learning for Ground-Level PM <inf>2.5</inf> Prediction from Satellite Remote Sensing Data. , 2018, , .		5
98	Estimating Regional Groundâ€Level PM _{2.5} Directly From Satellite Topâ€Ofâ€Atmosphere Reflectance Using Deep Belief Networks. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,875.	3.3	96
99	Learning a Dilated Residual Network for SAR Image Despeckling. Remote Sensing, 2018, 10, 196.	4.0	134
100	Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment. Atmospheric Environment, 2017, 152, 477-489.	4.1	166
101	An Adaptive Weighted Tensor Completion Method for the Recovery of Remote Sensing Images With Missing Data. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 3367-3381.	6.3	99
102	Boosting the Accuracy of Multispectral Image Pansharpening by Learning a Deep Residual Network. IEEE Geoscience and Remote Sensing Letters, 2017, 14, 1795-1799.	3.1	367
103	Estimating Groundâ€Level PM _{2.5} by Fusing Satellite and Station Observations: A Geoâ€Intelligent Deep Learning Approach. Geophysical Research Letters, 2017, 44, 11,985.	4.0	284
104	Deep residual learning for remote sensed imagery pansharpening., 2017,,.		23
105	High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123, 20-34.	11.1	97
106	Multi-scale-and-depth convolutional neural network for remote sensed imagery pan-sharpening. , 2017, , .		3
107	The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. International Journal of Environmental Research and Public Health, 2017, 14, 1510.	2.6	146
108	Miss data reconstruction in remote sensing images with a double weighted tensor low rank model. , 2017, , .		1

#	Article	IF	CITATIONS
109	An Automatic Shadow Detection Method for VHR Remote Sensing Orthoimagery. Remote Sensing, 2017, 9, 469.	4.0	38
110	Noise Removal From Hyperspectral Image With Joint Spectral–Spatial Distributed Sparse Representation. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 5425-5439.	6.3	88
111	Image super-resolution: The techniques, applications, and future. Signal Processing, 2016, 128, 389-408.	3.7	375
112	Hyperspectral Image Denoising with a Combined Spatial and Spectral Weighted Hyperspectral Total Variation Model. Canadian Journal of Remote Sensing, 2016, 42, 53-72.	2.4	28
113	Hyperspectral Image Super-Resolution by Spectral Mixture Analysis and Spatial–Spectral Group Sparsity. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 1250-1254.	3.1	72
114	A universal remote sensing image quality improvement method with deep learning. , 2016, , .		1
115	Hyperspectral Image Restoration via Iteratively Regularized Weighted Schatten <inline-formula> <tex-math notation="LaTeX">\$p\$</tex-math> </inline-formula> -Norm Minimization. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 4642-4659.	6.3	132
116	An efficient multi-resolution variational Retinex scheme for the radiometric correction of airborne remote sensing images. International Journal of Remote Sensing, 2016, 37, 1154-1172.	2.9	3
117	Stripe Noise Separation and Removal in Remote Sensing Images by Consideration of the Global Sparsity and Local Variational Properties. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 3049-3060.	6.3	7 5
118	Adaptive Norm Selection for Regularized Image Restoration and Super-Resolution. IEEE Transactions on Cybernetics, 2016, 46, 1388-1399.	9.5	49
119	A unified framework for spatio-temporal-spectral fusion of remote sensing images. , 2015, , .		12
120	Hyperspectral image recovery employing a multidimensional nonlocal total variation model. Signal Processing, 2015, 111, 230-248.	3.7	41
121	Fusion of multi-scale DEMs using a regularized super-resolution method. International Journal of Geographical Information Science, 2015, 29, 2095-2120.	4.8	28
122	Blind Restoration of Remote Sensing Images by a Combination of Automatic Knife-Edge Detection and Alternating Minimization. Remote Sensing, 2014, 6, 7491-7521.	4.0	16
123	Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92, 54-68.	11.1	147
124	Dead Pixel Completion of Aqua MODIS Band 6 Using a Robust M-Estimator Multiregression. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 768-772.	3.1	39
125	Recovering Quantitative Remote Sensing Products Contaminated by Thick Clouds and Shadows Using Multitemporal Dictionary Learning. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 7086-7098.	6.3	227
126	Hyperspectral Image Restoration Using Low-Rank Matrix Recovery. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 4729-4743.	6.3	642

#	Article	IF	CITATIONS
127	Hyperspectral Image Denoising With a Spatial–Spectral View Fusion Strategy. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 2314-2325.	6.3	56
128	A spatially adaptive retinex variational model for the uneven intensity correction of remote sensing images. Signal Processing, 2014, 101, 19-34.	3.7	36
129	An effective thin cloud removal procedure for visible remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96, 224-235.	11.1	125
130	A locally adaptive L1â^L2 norm for multi-frame super-resolution of images with mixed noise and outliers. Signal Processing, 2014, 105, 156-174.	3.7	52
131	Single image haze removal considering sensor blur and noise. Eurasip Journal on Advances in Signal Processing, 2013, 2013, .	1.7	48
132	Regional Spatially Adaptive Total Variation Super-Resolution With Spatial Information Filtering and Clustering. IEEE Transactions on Image Processing, 2013, 22, 2327-2342.	9.8	57
133	Hyperspectral Image Denoising Employing a Spectral–Spatial Adaptive Total Variation Model. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 3660-3677.	6.3	462
134	Multiframe Super-Resolution Employing a Spatially Weighted Total Variation Model. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22, 379-392.	8.3	128
135	Hypspectral image denoising with a multi-view fusion strategy. , 2012, , .		1
136	Adaptive Multiple-Frame Image Super-Resolution Based on U-Curve. IEEE Transactions on Image Processing, 2010, 19, 3157-3170.	9.8	61
137	CLOUD DETECTION BY FUSING MULTI-SCALE CONVOLUTIONAL FEATURES. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-3, 149-152.	0.0	16
138	REAL-TIME AND SEAMLESS MONITORING OF GROUND-LEVEL PM _{2.5} USING SATELLITE REMOTE SENSING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-3, 143-147.	0.0	3