
Waldemar Kanczkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10242032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic post-COVID-19 syndrome and chronic fatigue syndrome: Is there a role for extracorporeal apheresis?. Molecular Psychiatry, 2022, 27, 34-37.	7.9	59
2	COVID-19 targets human adrenal glands. Lancet Diabetes and Endocrinology,the, 2022, 10, 13-16.	11.4	46
3	Is there a role for the adrenal glands in long COVID?. Nature Reviews Endocrinology, 2022, 18, 451-452.	9.6	17
4	The longevity gene mIndy (I'm Not Dead, Yet) affects blood pressure through sympathoadrenal mechanisms. JCI Insight, 2021, 6, .	5.0	17
5	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Molecular Psychiatry, 2020, 25, 1611-1617.	7.9	70
6	Exquisite sensitivity of adrenocortical carcinomas to induction of ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22269-22274.	7.1	81
7	RNA-seq analysis of LPS-induced transcriptional changes and its possible implications for the adrenal gland dysregulation during sepsis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 191, 105360.	2.5	14
8	An Update on Addison's Disease. Experimental and Clinical Endocrinology and Diabetes, 2019, 127, 165-175.	1.2	57
9	Transcriptional Analysis of Sepsis-Induced Activation and Damage of the Adrenal Endothelial Microvascular Cells. Frontiers in Endocrinology, 2019, 10, 944.	3.5	11
10	The adrenal gland microenvironment in health, disease and during regeneration. Hormones, 2017, 16, 251-265.	1.9	18
11	The adrenal gland microenvironment in health, disease and during regeneration. Hormones, 2017, 13, 251-265.	1.9	11
12	Mortality of Septic Mice Strongly Correlates With Adrenal Cland Inflammation. Critical Care Medicine, 2016, 44, e190-e199.	0.9	23
13	Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis. Frontiers in Endocrinology, 2016, 7, 156.	3.5	35
14	The role of adrenal gland microenvironment in the HPA axis function and dysfunction during sepsis. Molecular and Cellular Endocrinology, 2015, 408, 241-248.	3.2	87
15	Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology, 2014, 60, 1196-1210.	7.3	57
16	Characterization of the LPS-induced inflammation of the adrenal gland in mice. Molecular and Cellular Endocrinology, 2013, 371, 228-235.	3.2	37
17	Role of the Endothelial-Derived Endogenous Anti-Inflammatory Factor Del-1 in Inflammation-Mediated Adrenal Gland Dysfunction. Endocrinology, 2013, 154, 1181-1189.	2.8	46
18	Transplantation of pancreatic islets to adrenal gland is promoted by agonists of growth-hormone-releasing hormone. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2288-2293.	7.1	47

#	Article	IF	CITATIONS
19	Hypothalamo-pituitary and immune-dependent adrenal regulation during systemic inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14801-14806.	7.1	71
20	Isolation, Characterization, and Differentiation of Progenitor Cells from Human Adult Adrenal Medulla. Stem Cells Translational Medicine, 2012, 1, 783-791.	3.3	45
21	Upregulation of TLR2 and TLR4 in the human adrenocortical cells differentially modulates adrenal steroidogenesis. Molecular and Cellular Endocrinology, 2011, 336, 41-46.	3.2	10
22	Endothelial dysfunction: a critical determinant in inflammation-associated adrenal insufficiency?. European Journal of Clinical Investigation, 2011, 41, 917-919.	3.4	7
23	Abrogation of TLR4 and CD14 Expression and Signaling in Human Adrenocortical Tumors. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E421-E429.	3.6	23
24	Role of Toll-Like Receptors and Inflammation in Adrenal Gland Insufficiency. NeuroImmunoModulation, 2010, 17, 180-183.	1.8	6
25	Differential expression and action of Toll-like receptors in human adrenocortical cells. Molecular and Cellular Endocrinology, 2009, 300, 57-65.	3.2	35
26	Toll-Like Receptor 9 Expression in Murine and Human Adrenal Glands and Possible Implications during Inflammation. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2773-2783.	3.6	24