Manuel Vazquez-Carrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1023637/publications.pdf

Version: 2024-02-01

41627 53065 8,987 155 51 89 citations h-index g-index papers 165 165 165 14554 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Endoplasmic reticulum stress downregulates PGC- $1\hat{l}\pm$ in skeletal muscle through ATF4 and an mTOR-mediated reduction of CRTC2. Cell Communication and Signaling, 2022, 20, 53.	2.7	10
2	PPARs as Key Mediators in the Regulation of Metabolism and Inflammation. International Journal of Molecular Sciences, 2022, 23, 5025.	1.8	7
3	Revealing the role of peroxisome proliferator-activated receptor \hat{l}^2/\hat{l} in nonalcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2021, 114, 154342.	1.5	26
4	CDK11 Promotes Cytokine-Induced Apoptosis in Pancreatic Beta Cells Independently of Glucose Concentration and Is Regulated by Inflammation in the NOD Mouse Model. Frontiers in Immunology, 2021, 12, 634797.	2.2	2
5	Uncovering the role of apolipoprotein C-III in insulin resistance. ClÃnica E InvestigaciÃ ³ n En Arteriosclerosis (English Edition), 2021, 33, 108-115.	0.1	o
6	Uncovering the role of apolipoprotein C-III in insulin resistance. Cl \tilde{A} nica E Investigaci \tilde{A}^3 n En Arteriosclerosis, 2021, 33, 108-115.	0.4	3
7	From the Design to the <i>In Vivo</i> Evaluation of Benzohomoadamantane-Derived Soluble Epoxide Hydrolase Inhibitors for the Treatment of Acute Pancreatitis. Journal of Medicinal Chemistry, 2021, 64, 5429-5446.	2.9	12
8	Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy. Trends in Molecular Medicine, 2021, 27, 554-571.	3.5	22
9	The PPARβ/δ-AMPK Connection in the Treatment of Insulin Resistance. International Journal of Molecular Sciences, 2021, 22, 8555.	1.8	17
10	State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. Toxics, 2021, 9, 195.	1.6	11
11	GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Reports, 2021, 36, 109501.	2.9	41
12	Crosstalk between the renin-angiotensin system and the endoplasmic reticulum stress in the cardiovascular system: Lessons learned so far. Life Sciences, 2021, 284, 119919.	2.0	20
13	$11\hat{l}^2$ -HSD1 Inhibition Rescues SAMP8 Cognitive Impairment Induced by Metabolic Stress. Molecular Neurobiology, 2020, 57, 551-565.	1.9	12
14	2-Oxaadamant-1-yl Ureas as Soluble Epoxide Hydrolase Inhibitors: <i>In Vivo</i> Evaluation in a Murine Model of Acute Pancreatitis. Journal of Medicinal Chemistry, 2020, 63, 9237-9257.	2.9	14
15	SIRT3 deficiency exacerbates fatty liver by attenuating the HIF1α-LIPIN 1 pathway and increasing CD36 through Nrf2. Cell Communication and Signaling, 2020, 18, 147.	2.7	25
16	SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation. Signal Transduction and Targeted Therapy, 2020, 5, 14.	7.1	87
17	Targeting FGF21 for the Treatment of Nonalcoholic Steatohepatitis. Trends in Pharmacological Sciences, 2020, 41, 199-208.	4.0	68
18	Pharmacological PPARÎ 2 /δactivation upregulates VLDLR in hepatocytes. ClÃnica E InvestigaciÃ 3 n En Arteriosclerosis (English Edition), 2019, 31, 111-118.	0.1	2

#	Article	IF	CITATIONS
19	Fatty acid binding protein 4 (FABP4) as a potential biomarker reflecting myocardial lipid storage in type 2 diabetes. Metabolism: Clinical and Experimental, 2019, 96, 12-21.	1.5	35
20	Reconfigurable multiplexed point of Care System for monitoring type 1 diabetes patients. Biosensors and Bioelectronics, 2019, 136, 38-46.	5.3	15
21	Oral administration of a new HRI activator as a new strategy to improve highâ€fatâ€dietâ€induced glucose intolerance, hepatic steatosis, and hypertriglyceridaemia through FGF21. British Journal of Pharmacology, 2019, 176, 2292-2305.	2.7	14
22	Role of brain câ€Jun Nâ€terminal kinase 2 in the control of the insulin receptor and its relationship with cognitive performance in a highâ€fat diet preâ€clinical model. Journal of Neurochemistry, 2019, 149, 255-268.	2.1	6
23	New Diarylureas as Activators of the Heme-Regulated EIF2α Kinase for the Treatment of Type 2 Diabetes Mellitus. Proceedings (mdpi), 2019, 22, .	0.2	О
24	Pharmacological PPARÎ 2 / $^\circ$ í activation upregulates VLDLR in hepatocytes. ClÃnica E InvestigaciÃ 3 n En Arteriosclerosis, 2019, 31, 111-118.	0.4	6
25	Synthesis of a New Family of Soluble Epoxide Hydrolase Inhibitors, in vitro Profiling and in vivo Evaluation in a Murine Model of Acute Pancreatitis. FASEB Journal, 2019, 33, 508.13.	0.2	O
26	GNIP1 E3 ubiquitin ligase is a novel player in regulating glycogen metabolism in skeletal muscle. Metabolism: Clinical and Experimental, 2018, 83, 177-187.	1.5	24
27	The BACE1 product sAPP \hat{l}^2 induces ER stress and inflammation and impairs insulin signaling. Metabolism: Clinical and Experimental, 2018, 85, 59-75.	1.5	26
28	Peripheral and Central Effects of Memantine in a Mixed Preclinical Mice Model of Obesity and Familial Alzheimer's Disease. Molecular Neurobiology, 2018, 55, 7327-7339.	1.9	24
29	A la búsqueda de la «huella metabólica» en la enfermedad cardiovascular. ClÃnica E Investigación En Arteriosclerosis, 2018, 30, 28-29.	0.4	O
30	Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends in Endocrinology and Metabolism, 2018, 29, 178-190.	3.1	365
31	Hepatic regulation of VLDL receptor by PPARÎ 2 Î $^\circ$ and FGF21 modulates non-alcoholic fatty liver disease. Molecular Metabolism, 2018, 8, 117-131.	3.0	77
32	Emerging Actors in Diabetic Cardiomyopathy: Heartbreaker Biomarkers or Therapeutic Targets?. Trends in Pharmacological Sciences, 2018, 39, 452-467.	4.0	62
33	PPARÎ 2 /Î 2 : A Key Therapeutic Target in Metabolic Disorders. International Journal of Molecular Sciences, 2018, 19, 913.	1.8	66
34	Tissue Compatibility of SNâ€38‣oaded Anticancer Nanofiber Matrices. Advanced Healthcare Materials, 2018, 7, e1800255.	3.9	5
35	The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opinion on Therapeutic Targets, 2017, 21, 291-304.	1.5	96
36	Small heterodimer partner (SHP) contributes to insulin resistance in cardiomyocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 541-551.	1.2	10

#	Article	IF	Citations
37	Inhibidores de HSP90 como futura estrategia terapéutica en la aterosclerosis asociada a diabetes. ClÃnica E Investigación En Arteriosclerosis, 2017, 29, 67-68.	0.4	2
38	VLDL and apolipoprotein CIII induce ER stress and inflammation and attenuate insulin signalling via Toll-like receptor 2 in mouse skeletal muscle cells. Diabetologia, 2017, 60, 2262-2273.	2.9	29
39	Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Progress in Lipid Research, 2016, 64, 98-122.	5.3	58
40	Heme-Regulated eIF2α Kinase Modulates Hepatic FGF21 and Is Activated by PPARβ/δ Deficiency. Diabetes, 2016, 65, 3185-3199.	0.3	31
41	Unraveling the Effects of PPAR $\hat{l}^2\hat{l}$ on Insulin Resistance and Cardiovascular Disease. Trends in Endocrinology and Metabolism, 2016, 27, 319-334.	3.1	55
42	PPARÎ 2 / 2 and lipid metabolism in the heart. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1569-1578.	1.2	39
43	Fenofibrate prevents the disruption of the outer blood retinal barrier through downregulation of NF-1ºB activity. Acta Diabetologica, 2016, 53, 109-118.	1.2	28
44	Carnitine palmitoyltransferase-1 up-regulation by PPAR- \hat{l}^2/\hat{l}^2 prevents lipid-induced endothelial dysfunction. Clinical Science, 2015, 129, 823-837.	1.8	42
45	AICAR Protects against High Palmitate/High Insulin-Induced Intramyocellular Lipid Accumulation and Insulin Resistance in HL-1 Cardiac Cells by Inducing PPAR-Target Gene Expression. PPAR Research, 2015, 2015, 1-12.	1.1	12
46	High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1687-1699.	1.8	134
47	PPAR- \hat{l}^2/\hat{l}^2 activation promotes phospholipid transfer protein expression. Biochemical Pharmacology, 2015, 94, 101-108.	2.0	23
48	Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E756-E769.	1.8	143
49	Targeting endoplasmic reticulum stress in insulin resistance. Trends in Endocrinology and Metabolism, 2015, 26, 438-448.	3.1	172
50	miR-146a targets <i>c-Fos</i> expression in human cardiac cells. DMM Disease Models and Mechanisms, 2015, 8, 1081-91.	1.2	35
51	PPARÎ 2 / 2 ameliorates fructose-induced insulin resistance in adipocytes by preventing Nrf2 activation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1049-1058.	1.8	21
52	Short-term administration of GW501516 improves inflammatory state in white adipose tissue and liver damage in high-fructose-fed mice through modulation of the renin-angiotensin system. Endocrine, 2015, 50, 355-367.	1.1	29
53	Remarkable quantitative and qualitative differences in HDL after niacin or fenofibrate therapy in type 2 diabetic patients. Atherosclerosis, 2015, 238, 213-219.	0.4	23
54	Effect of ovariectomy on inflammation induced by intermittent hypoxia in a mouse model of sleep apnea. Respiratory Physiology and Neurobiology, 2014, 202, 71-74.	0.7	20

#	Article	IF	CITATIONS
55	PPARβ Jî´ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia, 2014, 57, 2126-2135.	2.9	83
56	PPARÎ 2 /δ attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. International Journal of Cardiology, 2014, 174, 110-118.	0.8	58
57	Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1556-1566.	1.8	161
58	Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia, 2013, 56, 1372-1382.	2.9	173
59	Resveratrol induces nuclear factor-l̂ºB activity in human cardiac cells. International Journal of Cardiology, 2013, 167, 2507-2516.	0.8	28
60	Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARβ/δ-null mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1241-1248.	1.8	37
61	An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. International Journal of Cardiology, 2013, 168, 3160-3172.	0.8	238
62	Glucose dependence of glycogen synthase activity regulation by GSK3 and MEK/ERK inhibitors and angiotensin-($1ae^{*}$) action on these pathways in cultured human myotubes. Cellular Signalling, 2013, 25, 1318-1327.	1.7	16
63	Alliin, a Garlic (<i>Allium sativum</i>) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes. Mediators of Inflammation, 2013, 2013, 1-11.	1.4	72
64	La activación de receptor activado por proliferadores peroxisómicos β/δ mejora la resistencia a insulina inducida por IL-6 en células hepáticas. ClÃnica E Investigación En Arteriosclerosis, 2012, 24, 275-283.	0.4	0
65	TNF-α inhibits PPARβ/δ activity and SIRT1 expression through NF-κB in human adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1177-1185.	1.2	45
66	PGC-1α Induces Mitochondrial and Myokine Transcriptional Programs and Lipid Droplet and Glycogen Accumulation in Cultured Human Skeletal Muscle Cells. PLoS ONE, 2012, 7, e29985.	1.1	43
67	Targeting PPARÎ 2 Î $^\prime$ for the treatment of type 2 diabetes mellitus. Expert Opinion on Therapeutic Targets, 2012, 16, 209-223.	1.5	36
68	The peroxisome proliferator-activated receptor (PPAR) $\hat{l}^2\hat{l}^2$ agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia, 2012, 55, 743-751.	2.9	59
69	The PPARβ/Î [°] Activator GW501516 Prevents the Down-Regulation of AMPK Caused by a High-Fat Diet in Liver and Amplifies the PGC-1α-Lipin 1-PPARα Pathway Leading to Increased Fatty Acid Oxidation. Endocrinology, 2011, 152, 1848-1859.	1.4	136
70	PPARβ Ĵſ activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 59-67.	1.2	66
71	The Interplay between NF-kappaB and E2F1 Coordinately Regulates Inflammation and Metabolism in Human Cardiac Cells. PLoS ONE, 2011, 6, e19724.	1.1	28
72	The peroxisome proliferator-activated receptor $\hat{l}^2\hat{l}$ (PPAR $\hat{l}^2\hat{l}$) agonist GW501516 prevents TNF- \hat{l} ±-induced NF- \hat{l} 9 activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochemical Pharmacology, 2011, 81, 534-543.	2.0	61

#	Article	IF	Citations
73	Liver AMP/ATP ratio and fructokinase expression are related to gender differences in AMPK activity and glucose intolerance in rats ingesting liquid fructose. Journal of Nutritional Biochemistry, 2011, 22, 741-751.	1.9	86
74	Activation of Peroxisome Proliferator–Activated Receptor-β/-Î′ (PPAR-β/-Î′) Ameliorates Insulin Signaling and Reduces SOCS3 Levels by Inhibiting STAT3 in Interleukin-6–Stimulated Adipocytes. Diabetes, 2011, 60, 1990-1999.	0.3	64
75	Disodium ascorbyl phytostanol phosphate (FM-VP4), a modified phytostanol, is a highly active hypocholesterolaemic agent that affects the enterohepatic circulation of both cholesterol and bile acids in mice. British Journal of Nutrition, 2010, 103, 153-160.	1.2	15
76	Activation of Peroxisome Proliferator-Activated Receptor-Î [*] by GW501516 Prevents Fatty Acid-Induced Nuclear Factor-Î [®] B Activation and Insulin Resistance in Skeletal Muscle Cells. Endocrinology, 2010, 151, 1560-1569.	1.4	80
77	The Role of Peroxisome Proliferator-Activated Receptor \hat{l}^2/\hat{l}^2 on the Inflammatory Basis of Metabolic Disease. PPAR Research, 2010, 2010, 1-11.	1.1	22
78	The p65 subunit of NF- \hat{l} °B binds to PGC- $1\hat{l}$ ±, linking inflammation and metabolic disturbances in cardiac cells. Cardiovascular Research, 2010, 87, 449-458.	1.8	164
79	Cyclooxygenase 2 Inhibition Exacerbates Palmitate-Induced Inflammation and Insulin Resistance in Skeletal Muscle Cells. Endocrinology, 2010, 151, 537-548.	1.4	52
80	Peroxisome Proliferator-Activated Receptor (PPAR) \hat{l}^2 \hat{l} : A New Potential Therapeutic Target for the Treatment of Metabolic Syndrome. Current Molecular Pharmacology, 2009, 2, 46-55.	0.7	60
81	TNF-α reduces PGC-1α expression through NF-κB and p38 MAPK leading to increased glucose oxidation in a human cardiac cell model. Cardiovascular Research, 2009, 81, 703-712.	1.8	147
82	Atorvastatin prevents carbohydrate response element binding protein activation in the fructose-fed rat by activating protein kinase A. Hepatology, 2009, 49, 106-115.	3.6	58
83	Suppressor of cytokine signaling-3 (SOCS-3) and a deficit of serine/threonine (Ser/Thr) phosphoproteins involved in leptin transduction mediate the effect of fructose on rat liver lipid metabolism. Hepatology, 2008, 48, 1506-1516.	3.6	79
84	Monocyte gene-expression profile in men with familial combined hyperlipidemia and its modification by atorvastatin treatment. Pharmacogenomics, 2008, 9, 1035-1054.	0.6	17
85	Activation of Peroxisome Proliferator–Activated Receptor β/δInhibits Lipopolysaccharide-Induced Cytokine Production in Adipocytes by Lowering Nuclear Factor-κB Activity via Extracellular Signal–Related Kinase 1/2. Diabetes, 2008, 57, 2149-2157.	0.3	108
86	Atorvastatin inhibits GSK- $3\hat{l}^2$ phosphorylation by cardiac hypertrophic stimuli. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 26-35.	1.2	17
87	Ritonavir Increases CD36, ABCA1 and CYP27 Expression in THP-1 Macrophages. Experimental Biology and Medicine, 2008, 233, 1572-1582.	1.1	11
88	Hepatic Gene Expression Changes in an Experimental Model of Accelerated Senescence: The SAM-P8 Mouse. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 1043-1052.	1.7	3
89	Oleate Reverses Palmitate-induced Insulin Resistance and Inflammation in Skeletal Muscle Cells. Journal of Biological Chemistry, 2008, 283, 11107-11116.	1.6	285
90	Peroxisome Proliferator-Activated Receptor Down-Regulation Is Associated With Enhanced Ceramide Levels in Age-Associated Cardiac Hypertrophy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1326-1336.	1.7	26

#	Article	IF	Citations
91	Hypertriglyceridemia and Hepatic Steatosis in Senescence-Accelerated Mouse Associate to Changes in Lipid-Related Gene Expression. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1219-1227.	1.7	11
92	Impairment of hepatic Stat-3 activation and reduction of PPARÎ \pm activity in fructose-fed rats. Hepatology, 2007, 45, 778-788.	3. 6	206
93	PGC-1ss Down-Regulation Is Associated With Reduced ERRÂ Activity and MCAD Expression in Skeletal Muscle of Senescence-Accelerated Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 773-780.	1.7	32
94	Ageing introduces a complex pattern of changes in several rat brain transcription factors depending on gender and anatomical localization. Experimental Gerontology, 2006, 41, 372-379.	1.2	9
95	Effects of rosiglitazone and atorvastatin on the expression of genes that control cholesterol homeostasis in differentiating monocytes. Biochemical Pharmacology, 2006, 71, 605-614.	2.0	33
96	Palmitate Induces Tumor Necrosis Factor-α Expression in C2C12 Skeletal Muscle Cells by a Mechanism Involving Protein Kinase C and Nuclear Factor-ή Activation. Endocrinology, 2006, 147, 552-561.	1.4	155
97	Inhibition of Cardiac Hypertrophy by Triflusal (4-Trifluoromethyl Derivative of Salicylate) and Its Active Metabolite. Molecular Pharmacology, 2006, 69, 1174-1181.	1.0	6
98	Peroxisome Proliferator-Activated Receptors and the Control of Fatty Acid Oxidation in Cardiac Hypertrophy. Mini-Reviews in Medicinal Chemistry, 2006, 6, 357-363.	1.1	22
99	Palmitate-Mediated Downregulation of Peroxisome Proliferator-Activated Receptor-Â Coactivator 1Â in Skeletal Muscle Cells Involves MEK1/2 and Nuclear Factor-ÂB Activation. Diabetes, 2006, 55, 2779-2787.	0.3	134
100	Atorvastatin reverses age-related reduction in rat hepatic PPARÎ \pm and HNF-4. British Journal of Pharmacology, 2005, 145, 853-861.	2.7	61
101	Different response of senescent female Sprague–Dawley rats to gemfibrozil and rosiglitazone administration. Experimental Gerontology, 2005, 40, 588-598.	1.2	6
102	Increased Akt protein expression is associated with decreased ceramide content in skeletal muscle of troglitazone-treated mice. Biochemical Pharmacology, 2005, 69, 1195-1204.	2.0	32
103	Cholesterol regulation of genes involved in sterol trafficking in human THP-1 macrophages. Molecular and Cellular Biochemistry, 2005, 273, 185-191.	1.4	15
104	Leptin down-regulates peroxisome proliferator-activated receptor Î ³ (PPARÎ ³) mRNA levels in primary human monocyte-derived macrophages. Molecular and Cellular Biochemistry, 2005, 275, 173-179.	1.4	43
105	Aspirin increases CD36, SR-BI, and ABCA1 expression in human THP-1 macrophages. Cardiovascular Research, 2005, 66, 141-149.	1.8	42
106	Peroxisome proliferator-activated receptor ?/? activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovascular Research, 2005, 65, 832-841.	1.8	154
107	Palmitate-Induced Interleukin 6 Production Is Mediated by Protein Kinase C and Nuclear-Factor κB Activation and Leads to Glucose Transporter 4 Down-Regulation in Skeletal Muscle Cells. Endocrinology, 2005, 146, 3087-3095.	1.4	126
108	Nuclear Factor-κB Activation Leads to Down-regulation of Fatty Acid Oxidation during Cardiac Hypertrophy. Journal of Biological Chemistry, 2005, 280, 17464-17471.	1.6	117

#	Article	IF	Citations
109	El ácido palmÃŧico estimula la producción de interleucina 6 en células musculares esqueléticas por activación de la proteincinasa C y el factor nuclear κB. ClÃnica E Investigación En Arteriosclerosis, 2005, 17, 259-269.	0.4	O
110	Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor- \hat{l}^{Ω} B activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1687, 76-83.	1.2	81
111	Agonist-induced activation releases peroxisome proliferator-activated receptor \hat{l}^2/\hat{l}' from its inhibition by palmitate-induced nuclear factor- \hat{l}^0 B in skeletal muscle cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1734, 52-61.	1.2	24
112	Atorvastatin prevents peroxisome proliferator-activated receptor \hat{I}^3 coactivator-1 (PGC-1) downregulation in lipopolysaccharide-stimulated H9c2 cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1736, 120-127.	1.2	23
113	Rosiglitazone upregulates caveolin-1 expression in THP-1 cells through a PPAR-dependent mechanism. Journal of Lipid Research, 2004, 45, 2015-2024.	2.0	58
114	Impaired expression of NADH dehydrogenase subunit 1 and PPAR \hat{I}^3 coactivator-1 in skeletal muscle of ZDF rats. Journal of Lipid Research, 2004, 45, 113-123.	2.0	55
115	Sexual dimorphism in lipid metabolic phenotype associated with old age in Sprague–Dawley rats. Experimental Gerontology, 2004, 39, 1295-1306.	1.2	19
116	Lack of hypotriglyceridemic effect of gemfibrozil as a consequence of age-related changes in rat liver PPARα. Biochemical Pharmacology, 2004, 67, 157-166.	2.0	40
117	Reduction of intracellular cholesterol accumulation in THP-1 macrophages by a combination of rosiglitazone and atorvastatin. Biochemical Pharmacology, 2004, 68, 155-163.	2.0	32
118	Prevention of age-related changes in rat cortex transcription factor activator protein-1 by hypolipidemic drugs. Biochemical Pharmacology, 2004, 68, 1411-1421.	2.0	17
119	Fibrates modify the expression of key factors involved in bile-acid synthesis and biliary-lipid secretion in gallstone patients. European Journal of Clinical Pharmacology, 2004, 59, 855-861.	0.8	59
120	Reduction of intracellular cholesterol accumulation in THP-1 macrophages by a combination of rosiglitazone and atorvastatin. Biochemical Pharmacology, 2004, 68, 155-155.	2.0	1
121	Atorvastatin reduces CD68, FABP4, and HBP expression in oxLDL-treated human macrophages. Biochemical and Biophysical Research Communications, 2004, 318, 265-274.	1.0	79
122	Gemfibrozil increases the specific binding of rat-cortex nuclear extracts to a PPRE probe. Life Sciences, 2003, 73, 2927-2937.	2.0	9
123	Reductions in plasma cholesterol levels after fenofibrate treatment are negatively correlated with resistin expression in human adipose tissue. Metabolism: Clinical and Experimental, 2003, 52, 351-355.	1.5	19
124	Differential effects of peroxisome proliferator-activated receptor activators on the mRNA levels of genes involved in lipid metabolism in primary human monocyte-derived macrophages. Metabolism: Clinical and Experimental, 2003, 52, 652-657.	1.5	39
125	Down-regulation of acyl-CoA oxidase gene expression and increased NF-κB activity in etomoxir-induced cardiac hypertrophy. Journal of Lipid Research, 2003, 44, 388-398.	2.0	39
126	Down-Regulation of Acyl-CoA Oxidase Gene Expression in Heart of Troglitazone-Treated Mice through a Mechanism Involving Chicken Ovalbumin Upstream Promoter Transcription Factor II. Molecular Pharmacology, 2003, 64, 764-772.	1.0	21

#	Article	IF	Citations
127	Preclinical coronary atherosclerosis in a population with low incidence of myocardial infarction: cross sectional autopsy study. BMJ: British Medical Journal, 2003, 327, 591-592.	2.4	29
128	Increased Reactive Oxygen Species Production Down-regulates Peroxisome Proliferator-activated $\hat{l}\pm$ Pathway in C2C12 Skeletal Muscle Cells. Journal of Biological Chemistry, 2002, 277, 10100-10107.	1.6	55
129	Atorvastatin Treatment Induced Peroxisome Proliferator-Activated Receptor α Expression and Decreased Plasma Nonesterified Fatty Acids and Liver Triglyceride in Fructose-Fed Rats. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 232-239.	1.3	119
130	Avasimibe and atorvastatin synergistically reduce cholesteryl ester content in THP-1 macrophages. European Journal of Pharmacology, 2002, 451, 11-17.	1.7	23
131	High doses of atorvastatin and simvastatin induce key enzymes involved in VLDL production. Lipids, 2002, 37, 445-454.	0.7	52
132	Uncoupling protein-3 mRNA up-regulation in C2C12 myotubes after etomoxir treatment. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1532, 195-202.	1.2	9
133	Differential induction of stearoyl-CoA desaturase and acyl-CoA oxidase genes by fibrates in HepG2 cells. Biochemical Pharmacology, 2001, 61, 357-364. Increase in hepatic expression of SREBP-2 by gemfibrozil administration to rats 1 1Abbreviations: ACO,	2.0	12
134	acyl-CoA oxidase; Apo, apolipoprotein; APRT, adenosyl phosphoribosyl transferase; CT, CTP:phosphocholine cytidylyl transferase; HDL, high-density lipoprotein; HMG-CoA Rd, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase; LDL, low-density lipoprotein; PAP, phosphatidate phosphohydrolase; PPARα, peroxisome proliferator-activated receptor; SREBP, sterol regulatory	2.0	17
135	element binding protein; and VLDL, very-low-d. Biochemical Pharmacology, 2001, 62, 803-809. Bezafibrate Reduces mRNA Levels of Adipocyte Markers and Increases Fatty Acid Oxidation in Primary Culture of Adipocytes. Diabetes, 2001, 50, 1883-1890.	0.3	116
136	Impaired expression of the uncoupling protein-3 gene in skeletal muscle during lactation: fibrates and troglitazone reverse lactation-induced downregulation of the uncoupling protein-3 gene Diabetes, 2000, 49, 1224-1230.	0.3	43
137	Peroxisome Proliferator-Activated Receptor α (PPARα) Activators, Bezafibrate and Wy-14,643, Increase Uncoupling Protein-3 mRNA Levels without Modifying the Mitochondrial Membrane Potential in Primary Culture of Rat Preadipocytes. Archives of Biochemistry and Biophysics, 2000, 380, 353-359.	1.4	12
138	Down-regulation of uncoupling protein-3 and -2 by thiazolidinediones in C2C12 myotubes. FEBS Letters, 2000, 484, 37-42.	1.3	17
139	Different effect of simvastatin and atorvastatin on key enzymes involved in VLDL synthesis and catabolism in high fat/cholesterol fed rabbits. British Journal of Pharmacology, 1999, 127, 1479-1485.	2.7	57
140	Uncoupling Protein-3 mRNA Levels Are Increased in White Adipose Tissue and Skeletal Muscle of Bezafibrate-Treated Rats. Biochemical and Biophysical Research Communications, 1999, 260, 547-556.	1.0	45
141	Etomoxir, Sodium 2-[6-(4-Chlorophenoxy)hexyl]oxirane-2-carboxylate, Up-Regulates Uncoupling Protein-3 mRNA Levels in Primary Culture of Rat Preadipocytes. Biochemical and Biophysical Research Communications, 1999, 263, 87-93.	1.0	12
142	Lipoprotein composition and oxidative modification during therapy with gemfibrozil and lovastatin in patients with combined hyperlipidaemia. British Journal of Clinical Pharmacology, 1998, 45, 265-269.	1.1	12
143	Influence of Lipid Profile and Fatty Acid Composition on the Oxidation Behavior of Rat and Guinea Pig Low Density Lipoprotein. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 311-316.	0.7	9
144	Transcriptional Regulation by Triiodothyronine of the UDP-glucuronosyltransferase Family 1 Gene Complex in Rat Liver. Journal of Biological Chemistry, 1997, 272, 17171-17175.	1.6	15

#	Article	IF	CITATIONS
145	The PPARα–leukotriene B4 pathway to inflammation control. Nature, 1996, 384, 39-43.	13.7	1,329
146	Expression of the Peroxisome Proliferator-activated Receptor \hat{l}_{\pm} Gene Is Stimulated by Stress and Follows a Diurnal Rhythm. Journal of Biological Chemistry, 1996, 271, 1764-1769.	1.6	291
147	Different effects of fibrates on the microsomal fatty acid chain elongation and the acyl composition of phospholipids in guineaâ€pigs. British Journal of Pharmacology, 1995, 116, 3337-3343.	2.7	12
148	Differential effects of fibrates on the acyl composition of microsomal phospholipids in rats. British Journal of Pharmacology, 1995, 116, 2067-2075.	2.7	14
149	Selective modification of rat hepatic microsomal fatty acid chain elongation and desaturation by fibrates: relationship with peroxisome proliferation. British Journal of Pharmacology, 1995, 114, 1351-1358.	2.7	27
150	Relationship between plasma lipids and palmitoyl oA hydrolase and synthetase activities with peroxisomal proliferation in rats treated with fibrates. British Journal of Pharmacology, 1994, 112, 551-556.	2.7	38
151	Gemfibrozil modifies acyl composition of liver microsomal phospholipids from guinea-pigs without promoting peroxisomal proliferation. Biochemical Pharmacology, 1993, 46, 1515-1518.	2.0	8
152	Fibrates modify rat hepatic fatty acid chain elongation and desaturation in vitro. Biochemical Pharmacology, 1993, 46, 1791-1796.	2.0	13
153	Cytosolic lipogenic enzymes: Effect of fibric acid derivatives in vitro. Life Sciences, 1993, 52, 213-222.	2.0	9
154	Inhibition of rat liver microsomal fatty acid chain elongation by gemfibrozil in vitro. FEBS Letters, 1992, 300, 89-92.	1.3	12
155	Peroxisomal Proliferator-Activated Receptor $\hat{l}^2\hat{l}$ Deficiency Induces Cognitive Alterations. Frontiers in Pharmacology, 0, 13, .	1.6	2