List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1023496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delocalized electrochemical exfoliation toward high-throughput fabrication of high-quality graphene. Chemical Engineering Journal, 2022, 428, 131122.	12.7	10
2	Stacking driven Raman spectra change of carbon based 2D semiconductor C3N. Chinese Chemical Letters, 2022, 33, 2600-2604.	9.0	2
3	A one-pot strategy for highly efficient preparation of ultra-large graphene oxide. Carbon, 2022, 191, 477-485.	10.3	9
4	Investigation of a Highly Sensitive Surface-Enhanced Raman Scattering Substrate Formed by a Three-Dimensional/Two-Dimensional Graphene/Germanium Heterostructure. ACS Applied Materials & Interfaces, 2022, 14, 14764-14773.	8.0	3
5	Self-feedback autocatalysis in free radical triggered photosynthesis of N-doped graphene quantum dots. Synthetic Metals, 2021, 271, 116643.	3.9	3
6	Imaging Cellular Aerobic Glycolysis using Carbon Dots for Early Warning of Tumorigenesis. Advanced Materials, 2021, 33, e2005096.	21.0	48
7	Perovskite quantum dots integrated with vertically aligned graphene toward ambipolar multifunctional photodetectors. Journal of Materials Chemistry C, 2021, 9, 609-619.	5.5	12
8	Graphene Quantum Dots with Pyrrole N and Pyridine N: Superior Reactive Oxygen Species Generation Efficiency for Metalâ€Free Sonodynamic Tumor Therapy. Small, 2021, 17, e2004867.	10.0	69
9	Dual-enhanced Raman scattering sensors incorporating graphene plasmonic nanoresonators. Journal of Materials Chemistry C, 2021, 9, 12768-12777.	5.5	2
10	High-performance near-infrared photodetectors based on C ₃ N quantum dots integrated with single-crystal graphene. Journal of Materials Chemistry C, 2021, 9, 1333-1338.	5.5	7
11	Selective coordination and localized polarization in graphene quantum dots: Detection of fluoride anions using ultra-low-field NMR relaxometry. Chinese Chemical Letters, 2021, 32, 3921-3926.	9.0	5
12	Intact Vertical 3D–0D–2D Carbonâ€Based p–n Junctions for Use in Highâ€Performance Photodetectors. Advanced Optical Materials, 2021, 9, 2100387.	7.3	7
13	Sensitive, Reusable, Surface-Enhanced Raman Scattering Sensors Constructed with a 3D Graphene/Si Hybrid. ACS Applied Materials & Interfaces, 2021, 13, 23081-23091.	8.0	19
14	Bandgap engineering of two-dimensional C3N bilayers. Nature Electronics, 2021, 4, 486-494.	26.0	36
15	Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry. Sensors and Actuators B: Chemical, 2021, 337, 129786.	7.8	40
16	Boosting carrier transfer at flexible schottky junctions with moisture: A strategy for high-performance wearable direct-current nanogenerators. Nano Energy, 2021, 90, 106593.	16.0	14
17	Oxygen-etchant-promoted synthesis of vertically aligned graphene arrays in a Joule heater and defogger. Diamond and Related Materials, 2021, 120, 108697.	3.9	4
18	Graphene Quantum Dots Promoted the Synthesis of Heavily n-Type Graphene for Near-Infrared Photodetectors. Journal of Physical Chemistry C, 2020, 124, 1674-1680.	3.1	7

#	Article	IF	CITATIONS
19	High-performance humidity sensor constructed with vertically aligned graphene arrays on silicon Schottky junctions. Materials Letters, 2020, 277, 128343.	2.6	11
20	Role of interfacial 2D graphene in high performance 3D graphene/germanium Schottky junction humidity sensors. Journal of Materials Chemistry C, 2020, 8, 14196-14202.	5.5	6
21	Coordinating capillary infiltration with anodic oxidation: a multi-functional strategy for electrochemical fabrication of graphene. RSC Advances, 2020, 10, 43324-43333.	3.6	0
22	Carbonâ€Based Quantum Dots with Solid‣tate Photoluminescent: Mechanism, Implementation, and Application. Small, 2020, 16, e2004621.	10.0	141
23	Ultra-low noise graphene/copper/nylon fabric for electromagnetic interference shielding in ultra-low field magnetic resonance imaging. Journal of Magnetic Resonance, 2020, 317, 106775.	2.1	12
24	Interface Engineering-Assisted 3D-Graphene/Germanium Heterojunction for High-Performance Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 15606-15614.	8.0	33
25	Multi-color Reversible Photochromisms via Tunable Light-Dependent Responses. Matter, 2020, 2, 680-696.	10.0	44
26	Graphene Quantum Dot-Decorated Vertically Oriented Graphene/Germanium Heterojunctions for Near-Infrared Photodetectors. ACS Applied Nano Materials, 2020, 3, 6915-6924.	5.0	21
27	Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. Journal of Materials Chemistry A, 2020, 8, 14778-14787.	10.3	38
28	Polarizing Graphene Quantum Dots toward Long-Acting Intracellular Reactive Oxygen Species Evaluation and Tumor Detection. ACS Applied Materials & Interfaces, 2020, 12, 10781-10790.	8.0	21
29	"Selfâ€Matched―Tribo/Piezoelectric Nanogenerators Using Vaporâ€Induced Phaseâ€5eparated Poly(vinylidene fluoride) and Recombinant Spider Silk. Advanced Materials, 2020, 32, e1907336.	21.0	63
30	Plasmonic Coupling of AgNPs near Graphene Edges: A Cross-Section Strategy for High-Performance SERS Sensing. Chemistry of Materials, 2020, 32, 3813-3822.	6.7	20
31	Enhancing the magnetic relaxivity of MRI contrast agents via the localized superacid microenvironment of graphene quantum dots. Biomaterials, 2020, 250, 120056.	11.4	48
32	Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors. Advanced Functional Materials, 2019, 29, 1903732.	14.9	111
33	Highly solid-luminescent graphitic C ₃ N ₄ nanotubes for white light-emitting diodes. Journal Physics D: Applied Physics, 2019, 52, 505503.	2.8	3
34	Seedâ€Initiated Synthesis and Tunable Doping Graphene for Highâ€Performance Photodetectors. Advanced Optical Materials, 2019, 7, 1901388.	7.3	7
35	Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy, 2019, 66, 104134.	16.0	149
36	Photocatalytic Polymerization from Amino Acid to Protein by Carbon Dots at Room Temperature. ACS Applied Bio Materials, 2019, 2, 5144-5153.	4.6	17

#	Article	IF	CITATIONS
37	Graphite-N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 37796-37803.	8.0	61
38	Barrier-assisted ion beam synthesis of transfer-free graphene on an arbitrary substrate. Applied Physics Letters, 2019, 115, .	3.3	5
39	Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy, 2019, 58, 293-303.	16.0	123
40	Controllable growth of vertically oriented graphene for high sensitivity gas detection. Journal of Materials Chemistry C, 2019, 7, 5995-6003.	5.5	32
41	Hydroxyl functionalized carbon dots with strong radical scavenging ability promote cell proliferation. Materials Research Express, 2019, 6, 065030.	1.6	24
42	Green preparation of lattice phosphorus doped graphene quantum dots with tunable emission wavelength for bio-imaging. Materials Letters, 2019, 242, 156-159.	2.6	28
43	Electrochemically modified graphite for fast preparation of large-sized graphene oxide. Journal of Colloid and Interface Science, 2019, 542, 387-391.	9.4	15
44	Electrochemical method for large size and few-layered water-dispersible graphene. Carbon, 2019, 143, 559-563.	10.3	21
45	Electrochemical Strategy for Flexible and Highly Conductive Carbon Films: The Role of 3-Dimensional Graphene/Graphite Aggregates. ACS Applied Materials & Interfaces, 2019, 11, 1239-1246.	8.0	11
46	Promising Fast Energy Transfer System Between Graphene Quantum Dots and the Application in Fluorescent Bioimaging. Langmuir, 2019, 35, 760-766.	3.5	29
47	One-step hydrothermal synthesis of carbon dots-polymer composites with solid-state photoluminescence. Materials Letters, 2019, 238, 22-25.	2.6	17
48	Three-dimensional cross-linking composite of graphene, carbon nanotubes and Si nanoparticles for lithium ion battery anode. Nanotechnology, 2018, 29, 125603.	2.6	24
49	Anode coverage for enhanced electrochemical oxidation: a green and efficient strategy towards water-dispersible graphene. Green Chemistry, 2018, 20, 1306-1315.	9.0	35
50	Facile and Highly Effective Synthesis of Controllable Lattice Sulfur-Doped Graphene Quantum Dots via Hydrothermal Treatment of Durian. ACS Applied Materials & Interfaces, 2018, 10, 5750-5759.	8.0	201
51	Electrochemical Cutting in Weak Aqueous Electrolytes: The Strategy for Efficient and Controllable Preparation of Graphene Quantum Dots. Langmuir, 2018, 34, 250-258.	3.5	71
52	Highly Active Black TiO ₂ /Nâ€doped Graphene Quantum Dots Nanocomposites For Sunlight Driven Photocatalytic Sewage Treatment. ChemistrySelect, 2018, 3, 201-206.	1.5	12
53	Near-infrared photodetector based on Schottky junctions of monolayer graphene/GeOI. Materials Letters, 2018, 227, 17-20.	2.6	10
54	Core-shell SrTiO3/graphene structure by chemical vapor deposition for enhanced photocatalytic performance. Applied Surface Science, 2018, 436, 373-381.	6.1	26

#	Article	IF	CITATIONS
55	Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors. Nature Communications, 2018, 9, 5168.	12.8	71
56	Emancipating Targetâ€Functionalized Carbon Dots from Autophagy Vesicles for a Novel Visualized Tumor Therapy. Advanced Functional Materials, 2018, 28, 1800881.	14.9	97
57	Selective supramolecular interaction of ethylenediamine functionalized graphene quantum dots: Ultra-sensitive photoluminescence detection for nickel ion in vitro. Synthetic Metals, 2018, 244, 106-112.	3.9	30
58	Direct integration of polycrystalline graphene on silicon as a photodetector <i>via</i> plasma-assisted chemical vapor deposition. Journal of Materials Chemistry C, 2018, 6, 9682-9690.	5.5	11
59	Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors. ACS Applied Materials & Interfaces, 2018, 10, 30732-30740.	8.0	138
60	Insights into the Oxidation Mechanism of sp ² –sp ³ Hybrid Carbon Materials: Preparation of a Water-Soluble 2D Porous Conductive Network and Detectable Molecule Separation. Langmuir, 2017, 33, 913-919.	3.5	33
61	Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction. Physical Chemistry Chemical Physics, 2017, 19, 6057-6063.	2.8	92
62	Fabrication of centimeter-scale light-emitting diode with improved performance based on graphene quantum dots. Applied Physics Express, 2017, 10, 032102.	2.4	12
63	C ₃ N—A 2D Crystalline, Holeâ€Free, Tunableâ€Narrowâ€Bandgap Semiconductor with Ferromagnetic Properties. Advanced Materials, 2017, 29, 1605625.	21.0	350
64	Robust GQDs Modified Thermally Reduced Graphene Oxide Membranes for Ultrafast and Longâ€Term Purification of Dyeâ€Wasted Water. Advanced Materials Interfaces, 2017, 4, 1700209.	3.7	33
65	Carbon Dioxide Hydrogenation over a Metal-Free Carbon-Based Catalyst. ACS Catalysis, 2017, 7, 4497-4503.	11.2	71
66	Portable solid rapid quantitative detection for Cu2+ ions: Tuning the detection range limits of fluorescent conducting polymer dots. Journal of Materials Research, 2017, 32, 1582-1593.	2.6	1
67	Tunable amplified spontaneous emission in graphene quantum dots doped cholesteric liquid crystals. Nanotechnology, 2017, 28, 245202.	2.6	10
68	Green and Mild Oxidation: An Efficient Strategy toward Water-Dispersible Graphene. ACS Applied Materials & Interfaces, 2017, 9, 2856-2866.	8.0	24
69	Kinetically Enhanced Bubble-Exfoliation of Graphite toward High-Yield Preparation of High-Quality Graphene. Chemistry of Materials, 2017, 29, 8578-8582.	6.7	45
70	Electrochemical Fabrication of High Quality Graphene in Mixed Electrolyte for Ultrafast Electrothermal Heater. Chemistry of Materials, 2017, 29, 6214-6219.	6.7	60
71	One-step fast electrochemical fabrication of water-dispersible graphene. Carbon, 2017, 111, 617-621.	10.3	38
72	A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communications, 2016, 7, 13869.	12.8	505

#	Article	IF	CITATIONS
73	A New Graphene Derivative: Hydroxylated Graphene with Excellent Biocompatibility. ACS Applied Materials & Interfaces, 2016, 8, 10226-10233.	8.0	59
74	How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface. Nano Letters, 2016, 16, 3160-3165.	9.1	92
75	Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots. Nanotechnology, 2016, 27, 245703.	2.6	33
76	Green, simple and large scale synthesis of N-doped graphene quantum dots with uniform edge groups by electrochemical bottom-up synthesis. RSC Advances, 2016, 6, 82648-82653.	3.6	30
77	Electron Injection of Phosphorus Doped g ₃ N ₄ Quantum Dots: Controllable Photoluminescence Emission Wavelength in the Whole Visible Light Range with High Quantum Yield. Advanced Optical Materials, 2016, 4, 2095-2101.	7.3	86
78	Homologous metal-free electrocatalysts grown on three-dimensional carbon networks for overall water splitting in acidic and alkaline media. Journal of Materials Chemistry A, 2016, 4, 12878-12883.	10.3	75
79	Graphitic carbon nitride nanoribbon for enhanced visible-light photocatalytic H ₂ production. RSC Advances, 2016, 6, 112210-112214.	3.6	28
80	Controllable Edge Oxidation and Bubbling Exfoliation Enable the Fabrication of High Quality Water Dispersible Graphene. Scientific Reports, 2016, 6, 34127.	3.3	22
81	Surface Modification of C ₃ N ₄ through Oxygen-Plasma Treatment: A Simple Way toward Excellent Hydrophilicity. ACS Applied Materials & Interfaces, 2016, 8, 31419-31425.	8.0	66
82	Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions. Analyst, The, 2016, 141, 1052-1059.	3.5	39
83	The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots. Applied Physics Letters, 2015, 107, .	3.3	36
84	Synthesis of Layerâ€Tunable Graphene: A Combined Kinetic Implantation and Thermal Ejection Approach. Advanced Functional Materials, 2015, 25, 3666-3675.	14.9	43
85	Urea-assisted aqueous exfoliation of graphite for obtaining high-quality graphene. Chemical Communications, 2015, 51, 4651-4654.	4.1	61
86	Selenium Doped Graphene Quantum Dots as an Ultrasensitive Redox Fluorescent Switch. Chemistry of Materials, 2015, 27, 2004-2011.	6.7	190
87	Negative induction effect of graphite N on graphene quantum dots: tunable band gap photoluminescence. Journal of Materials Chemistry C, 2015, 3, 8810-8816.	5.5	139
88	Facile thermal annealing of graphite oxide in air for graphene with a higher C/O ratio. RSC Advances, 2015, 5, 69854-69860.	3.6	27
89	A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by-products. Journal of Materials Chemistry B, 2015, 3, 6871-6876.	5.8	120
90	Enhanced Crystallization from the Glassy State of Poly(<scp>l</scp> -lactic acid) Confined in Anodic Alumina Oxide Nanopores. Macromolecules, 2015, 48, 2526-2533.	4.8	54

GUQIAO DING

#	Article	IF	CITATIONS
91	Triphenylphosphine modified graphene quantum dots: spectral modulation for full spectrum of visible light with high quantum yield. RSC Advances, 2015, 5, 33347-33350.	3.6	30
92	Photoinduced electron transfer of poly(o-phenylenediamine)–Rhodamine B copolymer dots: application in ultrasensitive detection of nitrite in vivo. Journal of Materials Chemistry A, 2015, 3, 7568-7574.	10.3	51
93	Deep ultraviolet emission photoluminescence and high luminescece efficiency of ferric passivated graphene quantum dots: Strong negative inductive effect of Fe. Synthetic Metals, 2015, 209, 468-472.	3.9	31
94	Ultra-High Quantum Yield of Graphene Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism. Particle and Particle Systems Characterization, 2015, 32, 434-440.	2.3	182
95	Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances. Applied Surface Science, 2015, 328, 459-465.	6.1	30
96	Processable Aqueous Dispersions of Graphene Stabilized by Graphene Quantum Dots. Chemistry of Materials, 2015, 27, 218-226.	6.7	144
97	One-step combustion synthesis of NiFe ₂ O ₄ -reduced graphene oxide hybrid materials for photodegradation of methylene blue. Functional Materials Letters, 2014, 07, 1350065.	1.2	20
98	Direct growth of single-layer graphene on Ni surface manipulated by Si barrier. Applied Physics Letters, 2014, 104, 213101.	3.3	2
99	Growth of homogeneous single-layer graphene on Ni-Ge binary substrate. Applied Physics Letters, 2014, 104, .	3.3	9
100	Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon, 2014, 78, 38-48.	10.3	132
101	Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid. Surface and Coatings Technology, 2014, 254, 398-401.	4.8	24
102	Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene. Nanoscale Research Letters, 2014, 9, 367.	5.7	29
103	Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. Journal of Materials Chemistry A, 2014, 2, 8660.	10.3	405
104	Enhanced electromagnetic wave absorption performances of Co3O4 nanocube/reduced graphene oxide composite. Synthetic Metals, 2014, 194, 52-58.	3.9	95
105	Preparation and characterization of graphene oxide/poly(vinyl alcohol) composite nanofibers via electrospinning. Journal of Applied Polymer Science, 2013, 127, 3026-3032.	2.6	108
106	Optimal growth of Ge-rich dots on Si(001) substrates with hexagonal packed pit patterns. Nanotechnology, 2013, 24, 035302.	2.6	6
107	Direct Growth of Graphene Film on Germanium Substrate. Scientific Reports, 2013, 3, 2465.	3.3	181
108	Chemical vapor deposition of graphene on liquid metal catalysts. Carbon, 2013, 53, 321-326.	10.3	82

#	Article	IF	CITATIONS
109	Growth of controlled thickness graphene by ion implantation for field-effect transistor. Materials Letters, 2013, 107, 170-173.	2.6	13
110	Restrictions of Si-based Ge nanodots from porous alumina membranes. Superlattices and Microstructures, 2013, 60, 73-82.	3.1	1
111	Manipulating Crystal Orientation of Poly(ethylene oxide) by Nanopores. ACS Macro Letters, 2013, 2, 181-184.	4.8	62
112	Two-phase hydrothermal synthesis of TiO2–graphene hybrids with improved photocatalytic activity. Journal of Alloys and Compounds, 2013, 572, 199-204.	5.5	61
113	One-pot microwave-assisted combustion synthesis of graphene oxide–TiO2 hybrids for photodegradation of methyl orange. Journal of Alloys and Compounds, 2013, 551, 382-388.	5.5	111
114	Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon, 2012, 50, 329-331.	10.3	94
115	Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange. Carbon, 2012, 50, 4093-4101.	10.3	218
116	Reduction of nanoparticle deposition during fabrication of porous anodic alumina. Thin Solid Films, 2012, 520, 4321-4325.	1.8	5
117	Ultrasound-assisted anodization of aluminum in oxalic acid. Applied Surface Science, 2011, 258, 586-589.	6.1	29
118	Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon, 2011, 49, 2522-2525.	10.3	135
119	AFM, SEM and TEM Studies on Porous Anodic Alumina. Nanoscale Research Letters, 2010, 5, 725-734.	5.7	27
120	Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores. Nanoscale Research Letters, 2010, 5, 1257-1263.	5.7	32
121	Wetting on Nanoporous Alumina Surface: Transition between Wenzel and Cassie States Controlled by Surface Structure. Langmuir, 2008, 24, 9952-9955.	3.5	190