Yanhong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10232342/publications.pdf

Version: 2024-02-01

331259 344852 2,662 36 21 36 h-index citations g-index papers 37 37 37 3179 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature, 2016, 537, 558-562.	13.7	538
2	Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature, 2016, 537, 553-557.	13.7	516
3	Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nature Cell Biology, 2018, 20, 620-631.	4.6	292
4	Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discovery, 2016, 2, 16010.	3.1	165
5	Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Reports, 2017, 21, 3957-3969.	2.9	135
6	FTO mediates LINE1 m ⁶ A demethylation and chromatin regulation in mESCs and mouse development. Science, 2022, 376, 968-973.	6.0	97
7	Precise temporal regulation of Dux is important for embryo development. Cell Research, 2019, 29, 956-959.	5.7	85
8	Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein and Cell, 2021, 12, 455-474.	4.8	84
9	Hierarchical Oct4 Binding in Concert with Primed Epigenetic Rearrangements during Somatic Cell Reprogramming. Cell Reports, 2016, 14, 1540-1554.	2.9	74
10	Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos. Cell Stem Cell, 2018, 23, 426-435.e5.	5.2	72
11	Dosage effects of ZP2 and ZP3 heterozygous mutations cause human infertility. Human Genetics, 2017, 136, 975-985.	1.8	63
12	Na \tilde{A}^- ve Induced Pluripotent Stem Cells Generated From \hat{I}^2 -Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9. Stem Cells Translational Medicine, 2016, 5, 8-19.	1.6	59
13	Dux-Mediated Corrections of Aberrant H3K9ac during 2-Cell Genome Activation Optimize Efficiency of Somatic Cell Nuclear Transfer. Cell Stem Cell, 2021, 28, 150-163.e5.	5. 2	54
14	Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nature Communications, 2020, 11, 1813.	5. 8	43
15	Maternal Sall4 Is Indispensable for Epigenetic Maturation of Mouse Oocytes. Journal of Biological Chemistry, 2017, 292, 1798-1807.	1.6	37
16	Neonatal Repeated Exposure to Isoflurane not Sevoflurane in Mice Reversibly Impaired Spatial Cognition at Juvenile-Age. Neurochemical Research, 2017, 42, 595-605.	1.6	33
17	Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells. Cell Stem Cell, 2021, 28, 732-747.e9.	5.2	30
18	Nuclear Exosome Targeting Complex Core Factor Zcchc8 Regulates the Degradation of LINE1 RNA in Early Embryos and Embryonic Stem Cells. Cell Reports, 2019, 29, 2461-2472.e6.	2.9	28

#	Article	IF	CITATIONS
19	N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition. Nature Cell Biology, 2022, 24, 917-927.	4.6	28
20	Roscovitine, a CDK5 Inhibitor, Alleviates Sevoflurane-Induced Cognitive Dysfunction via Regulation Tau/GSK3β and ERK/PPARγ/CREB Signaling. Cellular Physiology and Biochemistry, 2017, 44, 423-435.	1.1	27
21	Jump-seq: Genome-Wide Capture and Amplification of 5-Hydroxymethylcytosine Sites. Journal of the American Chemical Society, 2019, 141, 8694-8697.	6.6	26
22	Reduced Self-Diploidization and Improved Survival of Semi-cloned Mice Produced from Androgenetic Haploid Embryonic Stem Cells through Overexpression of Dnmt3b. Stem Cell Reports, 2018, 10, 477-493.	2.3	24
23	Asymmetric Reprogramming Capacity of Parental Pronuclei in Mouse Zygotes. Cell Reports, 2014, 6, 1008-1016.	2.9	21
24	Enhanced Rejuvenation in Induced Pluripotent Stem Cell-Derived Neurons Compared with Directly Converted Neurons from an Aged Mouse. Stem Cells and Development, 2015, 24, 2767-2777.	1.1	21
25	Unique Patterns of H3K4me3 and H3K27me3 in 2-Cell-like Embryonic Stem Cells. Stem Cell Reports, 2021, 16, 458-469.	2.3	18
26	Oocyte-Specific Homeobox 1, Obox1, Facilitates Reprogramming by Promoting Mesenchymal-to-Epithelial Transition and Mitigating Cell Hyperproliferation. Stem Cell Reports, 2017, 9, 1692-1705.	2.3	14
27	Dynamic nucleosome organization after fertilization reveals regulatory factors for mouse zygotic genome activation. Cell Research, 2022, 32, 801-813.	5.7	14
28	Downregulation of CDK5 Restores Sevoflurane-Induced Cognitive Dysfunction by Promoting SIRT1-Mediated Autophagy. Cellular and Molecular Neurobiology, 2020, 40, 955-965.	1.7	12
29	Aberrant H3K4me3 modification of epiblast genes of extraembryonic tissue causes placental defects and implantation failure in mouse IVF embryos. Cell Reports, 2022, 39, 110784.	2.9	12
30	Melatonin supplementation in the culture medium rescues impaired glucose metabolism in IVF mice offspring. Journal of Pineal Research, 2022, 72, e12778.	3.4	11
31	Genome transfer for the prevention of female infertility caused by maternal gene mutation. Journal of Genetics and Genomics, 2020, 47, 311-319.	1.7	9
32	Precise allele-specific genome editing by spatiotemporal control of CRISPR-Cas9 via pronuclear transplantation. Nature Communications, 2020, 11, 4593.	5.8	5
33	Surf4 facilitates reprogramming by activating the cellular response to endoplasmic reticulum stress. Cell Proliferation, 2021, 54, e13133.	2.4	5
34	High throughput sequencing identifies an imprinted gene, Grb10, associated with the pluripotency state in nuclear transfer embryonic stem cells. Oncotarget, 2017, 8, 47344-47355.	0.8	5
35	BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding. Protein and Cell, 2022, 13, 580-601.	4.8	3
36	Differential Transcriptomes and Methylomes of Trophoblast Stem Cells From Naturally-Fertilized and Somatic Cell Nuclear-Transferred Embryos. Frontiers in Cell and Developmental Biology, 2021, 9, 664178.	1.8	0

3