Muhammad Imran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10227849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly‣actic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 552-571.	11.7	1,123
2	Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids, 2012, 29, 407-419.	10.7	153
3	Active Food Packaging Evolution: Transformation from Micro- to Nanotechnology. Critical Reviews in Food Science and Nutrition, 2010, 50, 799-821.	10.3	146
4	Cellulose derivative based active coatings: Effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydrate Polymers, 2010, 81, 219-225.	10.2	119
5	Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin. LWT - Food Science and Technology, 2015, 62, 341-349.	5.2	76
6	Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. Journal of Food Engineering, 2014, 143, 178-185.	5.2	75
7	Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydrate Polymers, 2016, 136, 682-691.	10.2	63
8	Potential of polymer stabilized nano-liposomes to enhance antimicrobial activity of nisin Z against foodborne pathogens. LWT - Food Science and Technology, 2018, 96, 98-110.	5.2	57
9	Development of Cefotaxime Impregnated Chitosan as Nano-antibiotics: De Novo Strategy to Combat Biofilm Forming Multi-drug Resistant Pathogens. Frontiers in Microbiology, 2016, 7, 330.	3.5	55
10	Polyelectrolyte Multicomponent Colloidosomes Loaded with Nisin Z for Enhanced Antimicrobial Activity against Foodborne Resistant Pathogens. Frontiers in Microbiology, 2017, 8, 2700.	3.5	49
11	Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. LWT - Food Science and Technology, 2016, 71, 227-233.	5.2	47
12	Antihypertensive nano-ceuticales based on chitosan biopolymer: Physico-chemical evaluation and release kinetics. Carbohydrate Polymers, 2016, 142, 268-274.	10.2	46
13	Antimicrobial and antibiofilm potential of bacteriocin loaded nano-vesicles functionalized with rhamnolipids against foodborne pathogens. LWT - Food Science and Technology, 2019, 116, 108583.	5.2	45
14	Mannose functionalized chitosan nanosystems for enhanced antimicrobial activity against multidrug resistant pathogens. Polymer Testing, 2020, 91, 106814.	4.8	28
15	Polyionic hybrid nano-engineered systems comprising alginate and chitosan for antihypertensive therapeutics. International Journal of Biological Macromolecules, 2016, 91, 180-187.	7.5	26
16	Alginate-caseinate based pH-responsive nano-coacervates to combat resistant bacterial biofilms in oral cavity. International Journal of Biological Macromolecules, 2020, 156, 1366-1380.	7.5	25
17	Factors pivotal for designing of nanoantimicrobials: an exposition. Critical Reviews in Microbiology, 2018, 44, 79-94.	6.1	23
18	Chitosan-albumin based core shell-corona nano-antimicrobials to eradicate resistant gastric pathogen. International Journal of Biological Macromolecules, 2019, 138, 1006-1018.	7.5	19

MUHAMMAD IMRAN

#	Article	IF	CITATIONS
19	Diffusion of Fluorescently Labeled Bacteriocin from Edible Nanomaterials and Embedded Nano-Bioactive Coatings. ACS Applied Materials & Interfaces, 2016, 8, 21618-21631.	8.0	17
20	Diffusion kinetics of nisin from composite coatings reinforced with nano-rhamnosomes. Journal of Food Engineering, 2021, 288, 110143.	5.2	17
21	Chitosan-curcumin complexation to develop functionalized nanosystems with enhanced antimicrobial activity against hetero-resistant gastric pathogen. International Journal of Biological Macromolecules, 2022, 204, 540-554.	7.5	16
22	Fluorescent labeling of nisin Z and assessment of anti-listerial action. Journal of Microbiological Methods, 2013, 95, 107-113.	1.6	15
23	Active Composite Packaging Reinforced with Nisin-Loaded Nano-Vesicles for Extended Shelf Life of Chicken Breast Filets and Cheese Slices. Food and Bioprocess Technology, 2022, 15, 1284-1298.	4.7	13
24	Potential of bacteriocinogenic Lactococcus lactis subsp. lactis inhabiting low pH vegetables to produce nisin variants. LWT - Food Science and Technology, 2014, 59, 204-210.	5.2	12
25	Impact of albumin corona on mucoadhesion and antimicrobial activity of carvacrol loaded chitosan nano-delivery systems under simulated gastro-intestinal conditions. International Journal of Biological Macromolecules, 2021, 169, 171-182.	7.5	11
26	Milk phospholipids-based nanostructures functionalized with rhamnolipids and bacteriocin: Intrinsic and synergistic antimicrobial activity for cheese preservation. Food Bioscience, 2022, 47, 101442.	4.4	11
27	Improving carvacrol bioaccessibility using core–shell carrier-systems under simulated gastrointestinal digestion. Food Chemistry, 2021, 353, 129505.	8.2	10