
Anthony P Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/102271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbohydrate Recognition through Noncovalent Interactions: A Challenge for Biomimetic and Supramolecular Chemistry. Angewandte Chemie - International Edition, 1999, 38, 2978-2996.	13.8	457
2	Fluorescent Sensing of Pyrophosphate and Bis-carboxylates with Charge Neutral PET Chemosensorsâ€. Organic Letters, 2002, 4, 2449-2452.	4.6	433
3	Development of synthetic membrane transporters for anions. Chemical Society Reviews, 2007, 36, 348-357.	38.1	377
4	A Synthetic Lectin Analog for Biomimetic Disaccharide Recognition. Science, 2007, 318, 619-622.	12.6	310
5	A simple and accessible synthetic lectin for glucose recognition and sensing. Nature Chemistry, 2012, 4, 718-723.	13.6	243
6	Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensorsElectronic supplementary data (ESI) available: 1H, 13C NMR for 1a–c and UV-Vis and NMR titration results for 1a are available as electronic supplementary information (ESI). See http://www.rsc.org/suppdata/cc/b1/b107608f/. Chemical Communications, 2001, , 2556-2557.	4.1	239
7	Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. Organic and Biomolecular Chemistry, 2004, 2, 1856.	2.8	209
8	Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate. Organic and Biomolecular Chemistry, 2005, 3, 48.	2.8	191
9	A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 186-235.	2.4	188
10	A biomimetic receptor for glucose. Nature Chemistry, 2019, 11, 52-56.	13.6	186
11	A fluorescent assay for chloride transport; identification of a synthetic anionophore with improved activity. Chemical Communications, 2005, , 1087.	4.1	182
12	Anion binding and transport by steroid-based receptors. Coordination Chemistry Reviews, 2006, 250, 2939-2951.	18.8	182
13	Chloride Transport Across Vesicle and Cell Membranes by Steroid-Based Receptors. Angewandte Chemie - International Edition, 2003, 42, 4931-4933.	13.8	180
14	Cholaphanes et al.; steroids as structural components in molecular engineering. Chemical Society Reviews, 1993, 22, 243.	38.1	179
15	Steroid-based anion receptors and transporters. Chemical Society Reviews, 2010, 39, 3633.	38.1	171
16	Steroids as organising elements in anion receptors. Coordination Chemistry Reviews, 2003, 240, 143-156.	18.8	165
17	Carbohydrate Recognition in Water by a Tricyclic Polyamide Receptor. Angewandte Chemie - International Edition, 2005, 44, 298-302.	13.8	151
18	Synthetic lectins. Organic and Biomolecular Chemistry, 2009, 7, 3629.	2.8	145

#	Article	IF	CITATIONS
19	New "Cholapod―Anionophores; High-Affinity Halide Receptors Derived from Cholic Acid. Journal of the American Chemical Society, 2001, 123, 12716-12717.	13.7	142
20	Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia. Nature Chemistry, 2016, 8, 24-32.	13.6	138
21	A Synthetic Lectin for Oâ€Linked βâ€ <i>N</i> â€Acetylglucosamine. Angewandte Chemie - International Edition, 2009, 48, 1775-1779.	13.8	133
22	Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C—H···Anion Interactions. Journal of the American Chemical Society, 2015, 137, 4948-4951.	13.7	128
23	Nonprotonophoric Electrogenic Clâ^' Transport Mediated by Valinomycin-like Carriers. CheM, 2016, 1, 127-146.	11.7	128
24	A threading receptor for polysaccharides. Nature Chemistry, 2016, 8, 69-74.	13.6	119
25	Anion Recognition by Tripodal Receptors Derived from Cholic Acid. Journal of the American Chemical Society, 1997, 119, 1793-1794.	13.7	118
26	Synthesis of substituted pyrenes by indirect methods. Organic and Biomolecular Chemistry, 2014, 12, 212-232.	2.8	116
27	Structure–Activity Relationships in Cholapod Anion Carriers: Enhanced Transmembrane Chloride Transport through Substituent Tuning. Chemistry - A European Journal, 2008, 14, 9599-9606.	3.3	108
28	A Tricyclic Polyamide Receptor for Carbohydrates in Organic Media. Angewandte Chemie - International Edition, 1998, 37, 2270-2273.	13.8	107
29	Progress in biomimetic carbohydrate recognition. Cellular and Molecular Life Sciences, 2009, 66, 3177-3191.	5.4	107
30	Substrate Discrimination by Cholapod Anion Receptors:Â Geometric Effects and the "Affinityâ~'Selectivity Principle― Journal of the American Chemical Society, 2005, 127, 10739-10746.	13.7	106
31	A Synthetic Lectin for βâ€Glucosyl. Angewandte Chemie - International Edition, 2009, 48, 7673-7676.	13.8	106
32	Highâ€Affinity Anion Binding by Steroidal Squaramide Receptors. Angewandte Chemie - International Edition, 2015, 54, 4592-4596.	13.8	106
33	Quantitative Emergence of Hetero[4]rotaxanes by Templateâ€Directed Click Chemistry. Angewandte Chemie - International Edition, 2013, 52, 381-387.	13.8	105
34	A Steroid-Based Cryptand for Halide Anions. Angewandte Chemie International Edition in English, 1996, 35, 1312-1315.	4.4	100
35	Making a Match for Valinomycin: Steroidal Scaffolds in the Design of Electroneutral, Electrogenic Anion Carriers. Accounts of Chemical Research, 2013, 46, 2898-2909.	15.6	94
36	Biomimetic carbohydrate recognition. Chemical Society Reviews, 2020, 49, 2531-2545.	38.1	91

#	Article	IF	CITATIONS
37	Diaxial Diureido Decalins as Compact, Efficient, and Tunable Anion Transporters. Journal of the American Chemical Society, 2011, 133, 1614-1617.	13.7	88
38	Solvent Effects in Carbohydrate Binding by Synthetic Receptors: Implications for the Role of Water in Natural Carbohydrate Recognition. Angewandte Chemie - International Edition, 2008, 47, 2693-2696.	13.8	87
39	Heterogeneous catalysis of the asymmetric aldol reaction by solid-supported proline-terminated peptides. Tetrahedron: Asymmetry, 2005, 16, 2487-2492.	1.8	86
40	Synthetic Receptors for the Highâ€Affinity Recognition of Oâ€GlcNAc Derivatives. Angewandte Chemie - International Edition, 2016, 55, 3387-3392.	13.8	86
41	Artificial Receptors for Carbohydrate Derivatives. Angewandte Chemie International Edition in English, 1990, 29, 1407-1408.	4.4	85
42	Preorganized Bis-Thioureas as Powerful Anion Carriers: Chloride Transport by Single Molecules in Large Unilamellar Vesicles. Journal of the American Chemical Society, 2014, 136, 12507-12512.	13.7	84
43	Bile Acid Scaffolds in Supramolecular Chemistry: The Interplay of Design and Synthesis. Molecules, 2007, 12, 2106-2122.	3.8	82
44	Highly Selective Disaccharide Recognition by a Tricyclic Octaamide Cage. Angewandte Chemie - International Edition, 2002, 41, 4093-4096.	13.8	74
45	Water Chains in Hydrophobic Crystal Channels: Nanoporous Materials as Supramolecular Analogues of Carbon Nanotubes. Angewandte Chemie - International Edition, 2010, 49, 5125-5129.	13.8	73
46	Highâ€Affinity Disaccharide Binding by Tricyclic Synthetic Lectins. Angewandte Chemie - International Edition, 2012, 51, 4586-4590.	13.8	72
47	Rapid Macrocycle Threading by a Fluorescent Dye–Polymer Conjugate in Water with Nanomolar Affinity. Journal of the American Chemical Society, 2015, 137, 8668-8671.	13.7	70
48	Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chemical Science, 2019, 10, 9663-9672.	7.4	70
49	Lipophilic balance – a new design principle for transmembrane anion carriers. Chemical Science, 2014, 5, 1128.	7.4	68
50	A Novel Sensitive Colorimetric Assay for Visual Detection of Solid-Phase Bound Amines. European Journal of Organic Chemistry, 1999, 1999, 2787-2791.	2.4	67
51	Application of Combinatorial Procedures in the Search for Serine-Protease-Like Activity with Focus on the Acyl Transfer Step. Angewandte Chemie - International Edition, 2000, 39, 145-148.	13.8	66
52	Molecular Recognition Mediated by Hydrogen Bonding in Aqueous Media. Angewandte Chemie - International Edition, 2021, 60, 8035-8048.	13.8	66
53	Synthetic molecular motors. Nature, 1999, 401, 120-121.	27.8	65
54	Enantioselective Transport by a Steroidal Guanidinium Receptor. Chemistry - A European Journal, 2002, 8, 2931.	3.3	64

#	Article	IF	CITATIONS
55	Synthesis and investigation of a hindered, chiral, bicyclic guanidine. Tetrahedron: Asymmetry, 1995, 6, 2829-2840.	1.8	63
56	Tilting at Windmills? The Second Law Survives. Angewandte Chemie - International Edition, 1998, 37, 909-910.	13.8	63
57	Steroidal guanidines as enantioselective receptors for N-acyl α-amino acids. Part 1. 3α-Guanylated carbamates derived from cholic acid. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1329-1341.	1.3	62
58	Diastereo- and enantio-selective binding of octyl glucosides by an artificial receptor. Journal of the Chemical Society Chemical Communications, 1992, , 752.	2.0	60
59	Phase transfer of monosaccharides through noncovalent interactions: Selective extraction of glucose by a lipophilic cage receptor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4863-4866.	7.1	60
60	Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature, 2022, 602, 606-611.	27.8	60
61	A New Generation of "Cholaphanesâ€ı Steroid-Derived Macrocyclic Hosts with Enhanced Solubility and Controlled Flexibility. Journal of Organic Chemistry, 1997, 62, 8463-8473.	3.2	59
62	Affinity Enhancement by Dendritic Side Chains in Synthetic Carbohydrate Receptors. Angewandte Chemie - International Edition, 2015, 54, 2057-2061.	13.8	58
63	Enantioselective carbohydrate recognition by synthetic lectins in water. Chemical Science, 2017, 8, 4056-4061.	7.4	56
64	Contra-Hofmeister anion extraction by cyclosteroidal receptors. Chemical Communications, 2005, , 5263.	4.1	55
65	From cholapod to cholaphane transmembrane anion carriers: accelerated transport through binding site enclosure. Chemical Communications, 2010, 46, 2227.	4.1	55
66	Differentially-protected steroidal triamines; scaffolds with potential for medicinal, supramolecular, and combinatorial chemistry. Organic and Biomolecular Chemistry, 2004, 2, 3320-3328.	2.8	54
67	Cholic acid as an architectural component in biomimetic/molecular recognition chemistry; synthesis of the first "cholaphanesâ€. Tetrahedron, 1993, 49, 9829-9844.	1.9	52
68	A trifunctional steroid-based scaffold for combinatorial chemistry. Tetrahedron Letters, 1999, 40, 2849-2852.	1.4	52
69	Perturbing the Hofmeister series: a steroid-based anion receptor with preorganised quaternary ammonium and H-bond donor groups. Chemical Communications, 2003, , 2246.	4.1	50
70	Facilitated Phosphatidylserine (PS) Flip-Flop and Thrombin Activation Using A Synthetic PS Scramblase. Journal of the American Chemical Society, 2003, 125, 8195-8201.	13.7	49
71	Facilitated Phospholipid Flip-Flop Using Synthetic Steroid-Derived Translocases. Journal of the American Chemical Society, 2002, 124, 5276-5277.	13.7	48
72	Deportonation of nitroalkanes by bicyclic amidine and guanidine bases; evidence for molecular recognition within a catalytic cycle for C–C bond formation. Journal of the Chemical Society Chemical Communications, 1992, , 239-242.	2.0	47

#	Article	IF	CITATIONS
73	Substituent Effects in Synthetic Lectins - Exploring the Role of CHâ^'ï€ Interactions in Carbohydrate Recognition. Journal of Organic Chemistry, 2011, 76, 6548-6557.	3.2	47
74	Tunable Porous Organic Crystals: Structural Scope and Adsorption Properties of Nanoporous Steroidal Ureas. Journal of the American Chemical Society, 2013, 135, 16912-16925.	13.7	47
75	Carbohydrate Receptors. , 2005, , 45-109.		46
76	A Flexible Solution to Anion Transport: Powerful Anionophores Based on a Cyclohexane Scaffold. Angewandte Chemie - International Edition, 2014, 53, 5609-5613.	13.8	46
77	Platform Synthetic Lectins for Divalent Carbohydrate Recognition in Water. Angewandte Chemie - International Edition, 2016, 55, 9311-9315.	13.8	45
78	Catalysis of the Addition of Allyltrimethylsilane to Aldehydes by Silylating Agents. Me3SiB(OTf)4, a New,â€~Supersilylating' Reagent. Angewandte Chemie International Edition in English, 1992, 31, 470-471.	4.4	44
79	Targeted anion transporter delivery by coiled-coil driven membrane fusion. Chemical Science, 2016, 7, 1768-1772.	7.4	44
80	Synthesis of steroidal cyclodimers from cholic acid; a molecular framework with potential for recognition and catalysis. Journal of the Chemical Society Chemical Communications, 1989, , 1050.	2.0	43
81	Thiourea isosteres as anion receptors and transmembrane transporters. Chemical Communications, 2011, 47, 7641.	4.1	43
82	Anion transport by <i>ortho</i> -phenylene bis-ureas across cell and vesicle membranes. Organic and Biomolecular Chemistry, 2018, 16, 1083-1087.	2.8	43
83	Observations of tetrel bonding between sp3-carbon and THF. Chemical Science, 2020, 11, 5289-5293.	7.4	43
84	The application of difunctional organosilicon compounds to organic synthesis; 1,3-asymmetric induction in the reduction of β-hydroxy-ketones. Journal of the Chemical Society Chemical Communications, 1986, , 831-832.	2.0	42
85	Crystal structure of a complex between β-glucopyranose and a macrocyclic receptor with dendritic multicharged water solubilizing chains. Chemical Communications, 2016, 52, 9355-9358.	4.1	42
86	Cholic acid as an architectural component in biomimetic/molecular recognition chemistry; Synthesis of "cholaphanes―with facial differentiation of functionality Tetrahedron, 1993, 49, 9855-9866.	1.9	41
87	An Extraction-Based Assay for Neutral Anionophores: The Measurement of High Binding Constants to Steroidal Receptors in a Nonpolar Solvent. Chemistry - A European Journal, 2002, 8, 2197.	3.3	40
88	A Vibrationâ€Inducedâ€Emissionâ€Based Fluorescent Chemosensor for the Selective and Visual Recognition of Glucose. Angewandte Chemie - International Edition, 2021, 60, 16880-16884.	13.8	40
89	Hydrosilylation-allylation sequence for the stereoselective elaboration of .betahydroxy esters. Journal of the American Chemical Society, 1992, 114, 2745-2746.	13.7	39
90	Steroidal Ureas as Enantioselective Receptors for anN-Acetyl α-Amino Carboxylate. Organic Letters, 2002, 4, 4639-4642.	4.6	39

#	Article	IF	CITATIONS
91	Ethynyl p-tolyl sulphone as an acetylene equivalent in Diels–Alder reactions. Journal of the Chemical Society Chemical Communications, 1980, , 639-640.	2.0	38
92	Synthesis and properties of enantiopure bicyclic amidines. Tetrahedron Letters, 1995, 36, 4279-4282.	1.4	38
93	Mitsunobu reactions with methanesulfonic acid; The replacement of equatorial hydroxyl groups by azide with net retention of configuration. Tetrahedron Letters, 1997, 38, 4305-4308.	1.4	38
94	The N-carbamoyl squaramide dimer: a compact, strongly associated H-bonding motif. Chemical Communications, 1999, , 2265-2266.	4.1	38
95	Nanoporous Organic Alloys. Angewandte Chemie - International Edition, 2011, 50, 11386-11390.	13.8	38
96	Nearâ€Infrared Croconaine Rotaxanes and Doped Nanoparticles for Enhanced Aqueous Photothermal Heating. Chemistry - A European Journal, 2014, 20, 12628-12635.	3.3	38
97	Visualization and Quantification of Transmembrane Ion Transport into Giant Unilamellar Vesicles. Angewandte Chemie - International Edition, 2015, 54, 2137-2141.	13.8	37
98	Steroidal guanidinium receptors for the enantioselective recognition of N-acyl α-amino acids. Chemical Communications, 1999, , 9-10.	4.1	36
99	Synthetic Receptors for the Highâ€Affinity Recognition of Oâ€GlcNAc Derivatives. Angewandte Chemie, 2016, 128, 3448-3453.	2.0	36
100	Steroid-based receptors with tunable cavities; a series of polyhydroxylated macrocycles of varying size and flexibility. Chemical Communications, 1996, , 453.	4.1	35
101	The "triamino-analogue―of methyl cholate; a facial amphiphile and scaffold with potential for combinatorial and molecular recognition chemistry. Tetrahedron Letters, 1998, 39, 6083-6086.	1.4	35
102	Cationic cyclocholamides; toroidal facial amphiphiles with potential for anion transport. Chemical Communications, 2008, , 3669.	4.1	35
103	Sticking to sugars. Nature, 2010, 464, 169-170.	27.8	35
104	Anion recognition by alkyl cholates: Neutral anionophores closely related to a natural product. Tetrahedron Letters, 1998, 39, 4569-4572.	1.4	34
105	Evaluation of a Two-Stage Screening Procedure in the Combinatorial Search for Serine Protease-Like Activity. ACS Combinatorial Science, 2002, 4, 552-562.	3.3	34
106	Tuning selectivity in macrotricyclic carbohydrate receptors; CH ? N mutations in aromatic spacersElectronic supplementary information (ESI) available: experimental details for the synthesis of receptors 3 and 4, binding studies of receptors 3 and 4 with monosaccharide 2, and extraction experiments. See http://www.rsc.org/suppdata/ob/b3/b315447e/. Organic and Biomolecular Chemistry,	2.8	34
107	2004, 2, 645. Spiraling Steroids: Organic Crystals with Asymmetric Nanometer-Scale Channels. Angewandte Chemie - International Edition, 2005, 44, 6878-6881.	13.8	33
108	The "triamino-analogue―of methyl allocholate; a rigid, functionalised scaffold for supramolecular chemistry. Chemical Communications, 2006, , 2335-2337.	4.1	32

#	Article	IF	CITATIONS
109	Super-acid catalysed addition of allylsilanes to carbonyl compounds; synthetic and mechanistic aspects. Journal of the Chemical Society Perkin Transactions 1, 1992, , 2111.	0.9	31
110	Non-Leaky Vesicle Fusion and Enhanced Cell Transfection Using a Cationic Facial Amphiphile. Journal of the American Chemical Society, 2000, 122, 3252-3253.	13.7	31
111	Sterically geared tris-thioureas; transmembrane chloride transporters with unusual activity and accessibility. Chemical Communications, 2015, 51, 14235-14238.	4.1	31
112	Anthracene Bisureas as Powerful and Accessible Anion Carriers. Chemistry - A European Journal, 2018, 24, 6262-6268.	3.3	31
113	Steroid-based receptors with tunable cavities; stepwise and direct syntheses of a C 3-symmetrical prototype. Chemical Communications, 1996, , 449.	4.1	30
114	The "Triamino-analogue" of Methyl Cholate; A Practical, Large-Scale Synthesis. Synlett, 1999, 1999, 991-993.	1.8	30
115	Repositioning Chloride Transmembrane Transporters: Transport of Organic Ion Pairs. Angewandte Chemie - International Edition, 2019, 58, 6921-6925.	13.8	30
116	Synthesis of (S)-2-Amino-1,1-diphenylbutan-4-ol; conversion of an α-amino acid into an α-(diphenylmethyl) amine without loss of optical purity. Tetrahedron: Asymmetry, 1995, 6, 2819-2828.	1.8	29
117	Selective disaccharide binding by a macrotetracyclic receptor. Chemical Communications, 2007, , 2390.	4.1	29
118	Chiral encoding may provide a simple solution to the origin of life. Nature Chemistry, 2014, 6, 569-574.	13.6	29
119	Editorial: Supramolecular chemistry in water. Organic and Biomolecular Chemistry, 2015, 13, 2499-2500.	2.8	29
120	Selective glucose sensing in complex media using a biomimetic receptor. Chemical Science, 2020, 11, 3223-3227.	7.4	29
121	Cholic acid as an architectural component in biomimetic/ molecular recognition chemistry; NMR and molecular mechanics study of a "tetra-acetoxycholaphaneâ€. Tetrahedron, 1993, 49, 9845-9854.	1.9	28
122	Electrochemical quantification of high-affinity halide binding by a steroid-based receptor. Organic and Biomolecular Chemistry, 2004, 2, 2716.	2.8	28
123	New H-bonding patterns in biphenyl-based synthetic lectins; pyrrolediamine bridges enhance glucose-selectivity. Organic and Biomolecular Chemistry, 2012, 10, 5760.	2.8	28
124	New procedures for selectively protected cholic acid derivatives. Regioselective protection of the 12α-OH group, and t-butyl esterification of the carboxyl group. Journal of the Chemical Society Perkin Transactions 1, 1990, , 2245-2250.	0.9	27
125	1,3-versus 1,2-Asymmetric induction in the reduction of β-hydroxy ketones by intramolecular hydrosilylation. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1383-1389.	0.9	26
126	A New Screen for Combinatorial Catalysis; On-Bead Testing in Agarose Gel. Angewandte Chemie - International Edition, 2001, 40, 3813-3815.	13.8	26

#	Article	IF	CITATIONS
127	Some epoxide ring-opening reactions of $\hat{I}\pm\hat{I}^2$ -epoxysilanes. Journal of the Chemical Society Perkin Transactions 1, 1981, , 1934-1941.	0.9	25
128	Amide bond formation via pentafluorothiophenyl active esters. Tetrahedron Letters, 1994, 35, 4865-4868.	1.4	25
129	Maltodextrin recognition by a macrocyclic synthetic lectin. Chemical Communications, 2018, 54, 8649-8652.	4.1	25
130	Aqueous recognition of purine and pyrimidine bases by an anthracene-based macrocyclic receptor. Chemical Communications, 2020, 56, 9268-9271.	4.1	25
131	Highly Selective Disaccharide Recognition by a Tricyclic Octaamide Cage. Angewandte Chemie, 2002, 114, 4267-4270.	2.0	24
132	Platform Synthetic Lectins for Divalent Carbohydrate Recognition in Water. Angewandte Chemie, 2016, 128, 9457-9461.	2.0	24
133	Synthesis and X-ray crystal structure of a new â€~cholaphane' with externally directed functionality. Journal of the Chemical Society Chemical Communications, 1991, , 612-614.	2.0	22
134	Gel-Phase MAS NMR Spectroscopy of a Polymer-Supported Pseudorotaxane and Rotaxane: Receptor Binding to an "Inert―Polyethylene Glycol Spacer. Angewandte Chemie - International Edition, 2001, 40, 1757-1760.	13.8	22
135	Tilting and Tumbling in Transmembrane Anion Carriers: Activity Tuning through n â€Alkyl Substitution. Chemistry - A European Journal, 2016, 22, 2004-2011.	3.3	22
136	Synthesis and evaluation of a desymmetrised synthetic lectin: an approach to carbohydrate receptors with improved versatility. Organic and Biomolecular Chemistry, 2016, 14, 1930-1933.	2.8	22
137	Synthesis and Application of Resorufin β- <scp>d</scp> -Glucuronide, a Low-Cost Chromogenic Substrate for Detecting <i>Escherichia coli</i> in Drinking Water. Environmental Science & Technology, 2014, 48, 9624-9631.	10.0	21
138	Synthesis and sensing efficiency of CN-wrapped ZnFe ₂ O ₄ microsphere–ionic liquid composites towards ultra-high sensitive arsenic(<scp>iii</scp>) monitoring of ground drinking water. Journal of Materials Chemistry C, 2020, 8, 12984-12992.	5.5	20
139	Supersilylating agents from chlorosilanes. Tetrahedron Letters, 1996, 37, 9401-9402.	1.4	19
140	Organogel media for on-bead screening in combinatorial catalysis. Tetrahedron Letters, 2005, 46, 3923-3926.	1.4	19
141	1,2-Oxathiolan, a simple sultene. Journal of the Chemical Society Chemical Communications, 1981, , 741.	2.0	18
142	Protection of primary amino as pyrrole in organometallic reagents. Tetrahedron Letters, 1992, 33, 8125-8126.	1.4	18
143	Deracemization by Enantiodifferentiating Inversion in 1,3-Diols. Angewandte Chemie International Edition in English, 1997, 36, 591-594.	4.4	18
144	An accessible bicyclic architecture for synthetic lectins. Chemical Communications, 2013, 49, 3110.	4.1	18

#	Article	IF	CITATIONS
145	Molecular Recognition Mediated by Hydrogen Bonding in Aqueous Media. Angewandte Chemie, 2021, 133, 8113-8126.	2.0	18
146	Superacid catalysis of the addition of allysilanes to carbonyl compounds. Journal of the Chemical Society Chemical Communications, 1990, , 1176.	2.0	16
147	Antimony-based "forcing knoevenagel―methodology for the conversion of ketones into alkylidenemalonates. Tetrahedron, 1995, 51, 8033-8042.	1.9	16
148	Evaluation of an Inexpensive Growth Medium for Direct Detection of Escherichia coli in Temperate and Sub-Tropical Waters. PLoS ONE, 2015, 10, e0140997.	2.5	16
149	Reagent control of cram-type selectivity in the mukaiyama aldol catalysed by supersilylating agents. Journal of the Chemical Society Chemical Communications, 1995, , 2173.	2.0	15
150	Molecular Recognition of βâ€ <i>O</i> â€GlcNAc Glycopeptides by a Lectinâ€Like Receptor: Binding Modulation by the Underlying Ser or Thr Amino Acids. ChemBioChem, 2011, 12, 110-117.	2.6	15
151	The stereoselective addition of organometallic reagents to electron-deficient alkylidenecyclohexanes; alternative linkages for cholaphane synthesis. Tetrahedron, 1992, 48, 8725-8738.	1.9	14
152	(4S,8S)-4,8-bis(diphenylmethyl)-1,5,7-triazabicyclo[4,4,0]dec-5-ene; a hindered, chiral, bicyclic guanidine base with effective C 2-symmetry. Journal of the Chemical Society Chemical Communications, 1994, , 1875.	2.0	14
153	A steroid-based receptor for unprotected amino acids: the enantioselective recognition of l-tryptophan. Tetrahedron, 2010, 66, 7423-7428.	1.9	14
154	5-Isothiazolidinonyl and 5-isoxazolidinonyl radicals. Tetrahedron, 1981, 37, 2181-2189.	1.9	13
155	An unexpected pathway in the palladium-catalysed chemistry of allyl carbonates; the transfer of allyloxycarbonyl groups without loss of CO2. Journal of the Chemical Society Chemical Communications, 1993, , 492.	2.0	13
156	Ein auf einem Steroid basierender Cryptand für Halogenidionen. Angewandte Chemie, 1996, 108, 1410-1413.	2.0	13
157	Binding or aggregation? Hazards of interpretation in studies of molecular recognition by porphyrins in water. Chemical Communications, 2015, 51, 9551-9554.	4.1	13
158	Transmembrane Transport of Bicarbonate Unravelled**. Chemistry - A European Journal, 2021, 27, 7367-7375.	3.3	13
159	A Flexible Solution to Anion Transport: Powerful Anionophores Based on a Cyclohexane Scaffold. Angewandte Chemie, 2014, 126, 5715-5719.	2.0	12
160	A folding decalin tetra-urea for transmembrane anion transport. Tetrahedron, 2017, 73, 4955-4962.	1.9	12
161	Synthesis of cyclo-bis[7α, 12α-diacetoxy-3β-dicyanomethyl-3α-(4-methylenephenyl)cholanamide]; a cholaphane with reduced flexibility and externally-directed functionality. Journal of the Chemical Society Perkin Transactions 1, 1993, , 919-924.	0.9	11
162	1,1,3,3-Tetraethyl-1,3-disilaisoindolines; Chromatographically stable silicon-based protection for primary amines. Tetrahedron Letters, 1995, 36, 3269-3272.	1.4	11

#	Article	IF	CITATIONS
163	The triisopropylsilyl effect: exceptional Cram-type selectivity in Mukaiyama aldol reactions of a silyl ketene thioacetal. Chemical Communications, 1998, , 1797-1798.	4.1	11
164	Cholanamide components for organic alloys; expanding the scope of nanoporous steroidal ureas. Chemical Communications, 2014, 50, 4803-4805.	4.1	11
165	Naphthyridine derived colorimetric and fluorescent turn off sensors for Ni2+ in aqueous media. Scientific Reports, 2021, 11, 19242.	3.3	11
166	Stereocontrolled synthesis of cholic acid derivatives with N-protected 7β- and/or 12β-amino substituents. Tetrahedron Letters, 1992, 33, 5111-5112.	1.4	10
167	Synthesis of Regioselectively Functionalized Pyrenes via Transition-Metal-Catalyzed Electrocyclization. Synthesis, 2010, 2010, 3686-3692.	2.3	10
168	Anion Recognition by a Bioactive Diureidodecalin Anionophore: Solidâ€ 5 tate, Solution, and Computational Studies. Chemistry - A European Journal, 2018, 24, 8178-8185.	3.3	10
169	Chemistry of pyrrocorphins: synthesis of isobacteriochlorins and pyrrocorphins bearing a methyl group at the meso position between rings A and D. Journal of the Chemical Society Chemical Communications, 1983, , 1401.	2.0	9
170	A Practical, Large-Scale Synthesis of Pyrene-2-Carboxylic Acid. Synlett, 2014, 25, 2591-2594.	1.8	9
171	6-Phenylsulfonyl-2,10-diazabicyclo[4.4.0]dec-1-ene–-a readily accessible, prototypical bicyclic amidine for studies in molecular recognition and catalysis. Journal of the Chemical Society Chemical Communications, 1994, , 2557-2558.	2.0	8
172	Benzylic oligothioethers as ditopic ligands for Group 6 transition metal carbonyls. Dalton Transactions RSC, 2000, , 173-179.	2.3	8
173	The stereochemistry of cyclisation of nbutyldihydrocinnamamide to a Î ² -lactam. Tetrahedron, 1982, 38, 2777-2781.	1.9	7
174	A Blue Dye for Substrate Tagging in the Two-Color Screening of Combinatorial Libraries. ACS Combinatorial Science, 2005, 7, 1-3.	3.3	7
175	Pore-forming small molecules offer a promising way to tackle cystic fibrosis. Nature, 2019, 567, 315-317.	27.8	7
176	Hexagonal Microparticles from Hierarchical Self-Organization of Chiral Trigonal Pd3L6 Macrotetracycles. Cell Reports Physical Science, 2021, 2, 100303.	5.6	7
177	Structural requirements for the modulatory effect of 6-substituted pterins on interleukin 2 receptor binding. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 330-334.	4.1	6
178	Chiral Guest Recognition. , 2004, , 236-244.		6
179	Knowledge is power!. Nature Nanotechnology, 2007, 2, 135-136.	31.5	6
180	Two-colour screening in combinatorial chemistry: prospecting for enantioselectivity in a library of steroid-based receptors. Tetrahedron, 2009, 65, 6370-6381.	1.9	6

#	Article	IF	CITATIONS
181	Penicillin biosynthesis: a model for the oxidative cyclisation of a peptide to a β-lactam. Journal of the Chemical Society Chemical Communications, 1981, , 1219-1221.	2.0	5
182	Repositioning Chloride Transmembrane Transporters: Transport of Organic Ion Pairs. Angewandte Chemie, 2019, 131, 6995-6999.	2.0	5
183	Transmembrane Transport of Bicarbonate Unravelled. Chemistry - A European Journal, 2021, 27, 7320-7320.	3.3	4
184	The design of organic catalysis for epoxidation by hydrogen peroxide. Journal of Molecular Modeling, 2006, 12, 649-652.	1.8	3
185	Nucleoside recognition by oligophenyl-based synthetic lectins. Supramolecular Chemistry, 2013, 25, 650-655.	1.2	2
186	Modulation of interleukin 2 high affinity binding to human T cells by a pyrimidodiazepine insect metabolite. FEBS Letters, 1993, 334, 309-312.	2.8	1
187	Chloride Transport Across Planar Lipid Bilayers and Cell Membranes by Steriod-Based Synthetic Anion Transporters. Biophysical Journal, 2014, 106, 188a-189a.	0.5	1
188	A Tricyclic Polyamide Receptor for Carbohydrates in Organic Media. Angewandte Chemie - International Edition, 1998, 37, 2270-2273.	13.8	1
189	A Blue Dye for Substrate Tagging in the Two-Color Screening of Combinatorial Libraries ChemInform, 2005, 36, no.	0.0	0
190	A Short Synthesis of Methyl 3α,7α,12α-Triaminocholanoate, the â€~Triaza-Analogue' of Methyl Cholate. Synlett, 2005, 2005, 1319-1321.	1.8	0
191	Desymmetrisation of Biphenyl-Based Carbohydrate Receptors: A Nonbonding Pillar in One Corner of the Cage. Synlett, 2008, 2008, 2137-2141.	1.8	0
192	Rate Constants for Anion Transport by Steroid-Based Synthetic Anion Transporters. Biophysical Journal, 2012, 102, 521a.	0.5	0
193	Innentitelbild: A Vibrationâ€Inducedâ€Emissionâ€Based Fluorescent Chemosensor for the Selective and Visual Recognition of Glucose (Angew. Chem. 31/2021). Angewandte Chemie, 2021, 133, 16854-16854.	2.0	0
194	A Vibrationâ€Inducedâ€Emissionâ€Based Fluorescent Chemosensor for the Selective and Visual Recognition of Glucose. Angewandte Chemie, 2021, 133, 17017-17021.	2.0	0
195	Steroidâ€Based Anion Complexation Agents. , 2004, , 1365-1371.		0

196 Phase Transfer of Monosaccharides through Noncovalent Interactions. , 2008, , 3347-3355.