Xin-Yuan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10226055/publications.pdf Version: 2024-02-01

XIN-YHAN LI

#	Article	IF	CITATIONS
1	Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Research, 2020, 13, 1842-1855.	10.4	532
2	A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam. Journal of Materials Chemistry A, 2015, 3, 5041-5046.	10.3	100
3	Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 59-66.	10.3	95
4	Efficient Plasmonic Au/CdSe Nanodumbbell for Photoelectrochemical Hydrogen Generation beyond Visible Region. Advanced Energy Materials, 2019, 9, 1803889.	19.5	85
5	Cation/Anion Exchange Reactions toward the Syntheses of Upgraded Nanostructures: Principles and Applications. Matter, 2020, 2, 554-586.	10.0	81
6	Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Research, 2022, 15, 2895-2904.	10.4	64
7	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution by Plasmonic Au/CdSe–Cu ₂ O Hierarchical Nanostructures under Visible Light. Small, 2020, 16, e2000426.	10.0	53
8	Atomic regulation of metal–organic framework derived carbon-based single-atom catalysts for the electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2021, 9, 23382-23418.	10.3	46
9	Electronic doping-enabled transition from n- to p-type conductivity over Au@CdS core–shell nanocrystals toward unassisted photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 23038-23045.	10.3	42
10	A photoelectrochemical methanol fuel cell based on aligned TiO ₂ nanorods decorated graphene photoanode. Chemical Communications, 2016, 52, 2533-2536.	4.1	41
11	Evolution of Hollow CuInS ₂ Nanododecahedrons via Kirkendall Effect Driven by Cation Exchange for Efficient Solar Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 27170-27177.	8.0	40
12	Au@HgxCd1-xTe core@shell nanorods by sequential aqueous cation exchange for near-infrared photodetectors. Nano Energy, 2019, 57, 57-65.	16.0	38
13	Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations. Nano Research, 2017, 10, 2977-2987.	10.4	32
14	Atomic Thickness Catalysts: Synthesis and Applications. Small Methods, 2020, 4, 2000248.	8.6	32
15	Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Applied Physics Reviews, 2021, 8, .	11.3	29
16	Theoretical Predictions, Experimental Modulation Strategies, and Applications of MXene upported Atomically Dispersed Metal Sites. Small, 2022, 18, e2105883.	10.0	28
17	From core-shell to yolk-shell: Keeping the intimately contacted interface for plasmonic metal@semiconductor nanorods toward enhanced near-infrared photoelectrochemical performance. Nano Research, 2020, 13, 1162-1170	10.4	25
18	Telluride semiconductor nanocrystals: progress on their liquid-phase synthesis and applications. Rare Metals, 2022, 41, 2527-2551.	7.1	10

Xin-Yuan Li

#	Article	IF	CITATIONS
19	Positively charged collective oscillations induce efficient Aβ1–42 fibril degradation in the presence of novel Au@Cu _{2â°x} S core/shell nanorods. Chemical Communications, 2021, 57, 6384-6387.	4.1	9
20	A telluride shell on plasmonic Au nanoparticles: amorphous/crystalline phase and shape evolution engineering <i>via</i> aqueous cation exchange. Materials Chemistry Frontiers, 2021, 5, 4571-4578.	5.9	8
21	Telluride Nanocrystals with Adjustable Amorphous Shell Thickness and Core–Shell Structure Modulation by Aqueous Cation Exchange. Inorganic Chemistry, 2022, 61, 3989-3996.	4.0	7
22	High Pressure Induced in Situ Solid-State Phase Transformation of Nonepitaxial Grown Metal@Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 6544-6549.	4.6	5
23	Microreactor platform for continuous synthesis of electronic doped quantum dots. Nano Research, 2022, 15, 9647-9653.	10.4	5
24	Atomically Surficial Modulation in Two-Dimensional Semiconductor Nanocrystals for Selective Photocatalytic Reactions. Frontiers in Chemistry, 2022, 10, 890287.	3.6	1