Marco Colella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10224560/publications.pdf

Version: 2024-02-01

567281 580821 25 708 15 25 citations h-index g-index papers 27 27 27 444 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Exploiting a "Beast―in Carbenoid Chemistry: Development of a Straightforward Direct Nucleophilic Fluoromethylation Strategy. Journal of the American Chemical Society, 2017, 139, 13648-13651.	13.7	104
2	Flow Technology for the Genesis and Use of (Highly) Reactive Organometallic Reagents. Chemistry - A European Journal, 2020, 26, 19-32.	3.3	89
3	Modular and Chemoselective Strategy for the Direct Access to α-Fluoroepoxides and Aziridines via the Addition of Fluoroiodomethyllithium to Carbonyl-Like Compounds. Organic Letters, 2019, 21, 584-588.	4.6	65
4	Fluoroâ€Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angewandte Chemie - International Edition, 2020, 59, 10924-10928.	13.8	60
5	Synthesis of Sulfonimidamides from Sulfenamides via an Alkoxyâ€aminoâ€î» ⁶ â€sulfanenitrile Intermediate. Angewandte Chemie - International Edition, 2019, 58, 14303-14310.	13.8	57
6	Flow Microreactor Technology for Taming Highly Reactive Chloroiodomethyllithium Carbenoid: Direct and Chemoselective Synthesis of I±-Chloroaldehydes. Organic Letters, 2020, 22, 3623-3627.	4.6	47
7	Supported Catalysts for Continuous Flow Synthesis. Topics in Current Chemistry, 2018, 376, 46.	5.8	39
8	Straightforward chemo- and stereoselective fluorocyclopropanation of allylic alcohols: exploiting the electrophilic nature of the not so elusive fluoroiodomethyllithium. Chemical Communications, 2019, 55, 8430-8433.	4.1	38
9	Continuous Flow Synthesis of Heterocycles: A Recent Update on the Flow Synthesis of Indoles. Molecules, 2020, 25, 3242.	3.8	27
10	Synthesis of Biaryls Having a Piperidylmethyl Group Based on Space Integration of Lithiation, Borylation, and Suzuki–Miyaura Coupling. European Journal of Organic Chemistry, 2020, 2020, 618-622.	2.4	20
11	Development of a Continuous Flow Synthesis of 2-Substituted Azetines and 3-Substituted Azetidines by Using a Common Synthetic Precursor. Journal of Organic Chemistry, 2021, 86, 13943-13954.	3.2	20
12	Nâ^'N Bond Formation Using an Iodonitrene as an Umpolung of Ammonia: Straightforward and Chemoselective Synthesis of Hydrazinium Salts. Advanced Synthesis and Catalysis, 2021, 363, 194-199.	4.3	18
13	Sulfinimidate Esters as an Electrophilic Sulfinimidoyl Motif Source: Synthesis of <i>N</i> Protected Sulfilimines from Grignard Reagents. Organic Letters, 2021, 23, 6850-6854.	4.6	17
14	Synthesis of Sulfonimidamides from Sulfenamides via an Alkoxyâ€aminoâ€î» 6 â€sulfanenitrile Intermediate. Angewandte Chemie, 2019, 131, 14441-14448.	2.0	16
15	Fluoro‧ubstituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angewandte Chemie, 2020, 132, 11016-11020.	2.0	16
16	Flow technology enabled preparation of C3-heterosubstituted 1-azabicyclo[1.1.0]butanes and azetidines: accessing unexplored chemical space in strained heterocyclic chemistry. Chemical Communications, 2022, 58, 6356-6359.	4.1	15
17	The synthetic versatility of fluoroiodomethane: recent applications as monofluoromethylation platform. Organic and Biomolecular Chemistry, 2022, 20, 4669-4680.	2.8	12
18	Hypervalent iodine (III) reagents and ammonia as useful combination for highly chemoselective N-transfer to low-valent organosulfur compounds and amines. Arkivoc, 2022, 2021, 141-163.	0.5	9

#	Article	IF	CITATION
19	1,3-Dibromo-1,1-difluoro-2-propanone as a Useful Synthon for a Chemoselective Preparation of 4-Bromodifluoromethyl Thiazoles. ACS Omega, 2018, 3, 14841-14848.	3.5	8
20	Stereo- and Enantioselective Addition of Organolithiums to 2-Oxazolinylazetidines as a Synthetic Route to 2-Acylazetidines. Frontiers in Chemistry, 2019, 7, 614.	3.6	7
21	Use of Hypervalent Iodine in the Synthesis of Isomeric Dihydrooxazoles. Chemistry of Heterocyclic Compounds, 2018, 54, 428-436.	1.2	6
22	Supported Catalysts for Continuous Flow Synthesis. Topics in Current Chemistry Collections, 2020, , 29-65.	0.5	5
23	Dynamic Phenomena and Complexation Effects in the \hat{l} ±-Lithiation and Asymmetric Functionalization of Azetidines. Molecules, 2022, 27, 2847.	3.8	4
24	Frontispiece: Flow Technology for the Genesis and Use of (Highly) Reactive Organometallic Reagents. Chemistry - A European Journal, 2020, 26, .	3.3	3
25	Lithiated three-membered heterocycles as chiral nucleophiles in the enantioselective synthesis of 1-oxaspiro[2,3]hexanes. Organic and Biomolecular Chemistry, 2021, 19, 1945-1949.	2.8	3