Yusuke Nishiyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1022323/publications.pdf

Version: 2024-02-01

186265 197818 2,774 85 28 49 citations g-index h-index papers 89 89 89 2975 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Separating an overlapped 1H peak and identifying its 1H-1H correlations with the use of single-channel 1H solid-state NMR at fast MAS. Solid State Nuclear Magnetic Resonance, 2022, 117, 101774.	2.3	2
2	Detection of remote proton–nitrogen correlations by ¹ H-detected ¹⁴ N overtone solid-state NMR at fast MAS. Physical Chemistry Chemical Physics, 2022, 24, 10717-10726.	2.8	13
3	Practical guides for 1H detected solid-state NMR under fast MAS for small molecules. Journal of Magnetic Resonance Open, 2022, 10-11, 100062.	1.1	1
4	Network Size Control in Coordination Polymer Glasses and Its Impact on Viscosity and H ⁺ Conductivity. Chemistry of Materials, 2022, 34, 5832-5841.	6.7	14
5	αâ€Cyclodextrin Encapsulation of Bicyclo[1.1.1]pentane Derivatives: A Storable Feedstock for Preparation of [1.1.1]Propellane. Angewandte Chemie, 2021, 133, 2610-2614.	2.0	1
6	αâ€Cyclodextrin Encapsulation of Bicyclo[1.1.1]pentane Derivatives: A Storable Feedstock for Preparation of [1.1.1]Propellane. Angewandte Chemie - International Edition, 2021, 60, 2578-2582.	13.8	8
7	A non-planar 2D covalent organic framework derived from a Z-shaped building unit. Chemical Communications, 2021, 57, 9236-9239.	4.1	4
8	Host–Guest Assembly of H-Bonding Networks in Covalent Organic Frameworks for Ultrafast and Anhydrous Proton Transfer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37172-37178.	8.0	19
9	Structure Solution of Nano-Crystalline Small Molecules Using MicroED and Solid-State NMR Dipolar-Based Experiments. Molecules, 2021, 26, 4652.	3.8	8
10	Determination of the chemical shift tensor anisotropy and asymmetry of strongly dipolar coupled protons under fast MAS. Solid State Nuclear Magnetic Resonance, 2021, 114, 101743.	2.3	11
11	Efficient symmetry-based î³-encoded DQ recoupling sequences for suppression of t1-noise in solid-state NMR spectroscopy at fast MAS. Solid State Nuclear Magnetic Resonance, 2021, 114, 101734.	2.3	20
12	One-Pot, Room-Temperature Conversion of CO ₂ into Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 16750-16757.	13.7	14
13	Titelbild: αâ€Cyclodextrin Encapsulation of Bicyclo[1.1.1]pentane Derivatives: A Storable Feedstock for Preparation of [1.1.1]Propellane (Angew. Chem. 5/2021). Angewandte Chemie, 2021, 133, 2197-2197.	2.0	0
14	Selective Synthesis of a Salt and a Cocrystal of the Ethionamide–Salicylic Acid System. Crystal Growth and Design, 2020, 20, 906-915.	3.0	49
15	Ligand-Functionalization-Controlled Activity of Metal–Organic Framework-Encapsulated Pt Nanocatalyst toward Activation of Water. Nano Letters, 2020, 20, 426-432.	9.1	30
16	<i><i></i><₁-Noise Suppression by \hat{l}^3-Free Recoupling Sequences in Solid-State NMR for Structural Characterization of Fully Protonated Molecules at Fast MAS. Journal of Physical Chemistry C, 2020, 124, 26332-26343.</i>	3.1	16
17	Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for Anhydrous Proton Conduction. Journal of the American Chemical Society, 2020, 142, 14357-14364.	13.7	167
18	Accuracy of 1H–1H distances measured using frequency selective recoupling and fast magic-angle spinning. Journal of Chemical Physics, 2020, 153, 084202.	3.0	19

#	Article	IF	CITATIONS
19	Dynamic Transformation between Covalent Organic Frameworks and Discrete Organic Cages. Journal of the American Chemical Society, 2020, 142, 21279-21284.	13.7	54
20	High-resolution proton-detected MAS experiments on self-assembled diphenylalanine nanotubes enabled by fast MAS and high magnetic field. Journal of Magnetic Resonance, 2020, 313, 106717.	2.1	11
21	Can proton-proton recoupling in fully protonated solids provide quantitative, selective and efficient polarization transfer?. Journal of Magnetic Resonance, 2020, 317, 106777.	2.1	22
22	Coordination polymer glass from a protic ionic liquid: proton conductivity and mechanical properties as an electrolyte. Chemical Science, 2020, 11, 5175-5181.	7.4	47
23	Understanding hydrogen-bonding structures of molecular crystals via electron and NMR nanocrystallography. Nature Communications, 2019, 10, 3537.	12.8	48
24	Glass-phase coordination polymer displaying proton conductivity and guest-accessible porosity. Chemical Communications, 2019, 55, 8528-8531.	4.1	24
25	Synthesis of porous coordination polymers using carbon dioxide as a direct source. Chemical Communications, 2019, 55, 9283-9286.	4.1	5
26	Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity. Journal of Magnetic Resonance, 2019, 309, 106615.	2.1	15
27	Determination of the ¹⁵ N chemical shift anisotropy in natural abundance samples by protonâ€detected 3D solidâ€state NMR under ultrafast MAS of 70ÂkHz. Magnetic Resonance in Chemistry, 2019, 57, 294-303.	1.9	10
28	Using Dynamic Bonds to Enhance the Mechanical Performance: From Microscopic Molecular Interactions to Macroscopic Properties. Macromolecules, 2019, 52, 5014-5025.	4.8	64
29	Resolution enhancement and proton proximity probed by 3D TQ/DQ/SQ proton NMR spectroscopy under ultrafast magic-angle-spinning beyond 70†kHz. Journal of Magnetic Resonance, 2019, 304, 78-86.	2.1	16
30	Borohydride-containing coordination polymers: synthesis, air stability and dehydrogenation. Chemical Science, 2019, 10, 6193-6198.	7.4	4
31	Synthesis and Structural Characterization of a Pure ZnAl ₄ (OH) ₁₂ (SO ₄)·2.6H ₂ O Layered Double Hydroxide. Inorganic Chemistry, 2019, 58, 6114-6122.	4.0	15
32	Crystal melting and glass formation in copper thiocyanate based coordination polymers. Chemical Communications, 2019, 55, 5455-5458.	4.1	57
33	Tuning the Intercage Distance in Chargeâ€Regulated Blackberryâ€√ype Assemblies through Host–Guest Chemistry. Chemistry - A European Journal, 2019, 25, 5803-5808.	3.3	11
34	Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li ⁺ Electrolyte. Journal of the American Chemical Society, 2019, 141, 1227-1234.	13.7	232
35	Detection of side-chain proton resonances of fully protonated biosolids in nano-litre volumes by magic angle spinning solid-state NMR. Journal of Biomolecular NMR, 2018, 70, 177-185.	2.8	11
36	Intermolecular Arrangement of Fullerene Acceptors Proximal to Semiconducting Polymers in Mixed Bulk Heterojunctions. Angewandte Chemie - International Edition, 2018, 57, 7034-7039.	13.8	11

#	Article	IF	CITATIONS
37	Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach. Journal of the American Chemical Society, 2018, 140, 2602-2609.	13.7	117
38	Forcing the †lazy' protons to work. Physical Chemistry Chemical Physics, 2018, 20, 25829-25840.	2.8	4
39	A one-dimensional solid-state NMR approach for ¹⁴ NH/ ¹⁴ NH overtone correlation through ¹ H/ ¹ H mixing under fast MAS. Physical Chemistry Chemical Physics, 2018, 20, 25849-25853.	2.8	8
40	Quantitative ¹ H– ¹ H Distances in Protonated Solids by Frequency-Selective Recoupling at Fast Magic Angle Spinning NMR. Journal of Physical Chemistry Letters, 2018, 9, 5948-5954.	4.6	39
41	HR-μMAS NMR-Based Metabolomics: Localized Metabolic Profiling of a Garlic Clove with μg Tissues. Analytical Chemistry, 2018, 90, 13736-13743.	6.5	14
42	The distribution of reactive Ni ²⁺ in 2D Mg _{2â^'x} Ni _x Al-LDH nanohybrid materials determined by solid state ²⁷ Al MAS NMR spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 25335-25342.	2.8	11
43	Maximizing the sensitivity in 13C cross-polarization magic-angle-spinning solid-state NMR measurements with flip-back pulses. Journal of Magnetic Resonance, 2018, 294, 122-127.	2.1	6
44	3D ¹⁴ N/ ¹ H Double Quantum/ ¹ H Single Quantum Correlation Solidâ€State NMR for Probing the Parallel and Antiâ€Parallel Betaâ€Sheet Arrangement of Oligoâ€Peptides at Natural Abundance. ChemPhysChem, 2018, 19, 1841-1845.	2.1	13
45	14N overtone nuclear magnetic resonance of rotating solids. Journal of Chemical Physics, 2018, 149, 064201.	3.0	12
46	Satellite and central transitions selective 1H/{27Al} D-HMQC experiments at very fast MAS for quadrupolar couplings determination. Solid State Nuclear Magnetic Resonance, 2017, 84, 83-88.	2.3	12
47	Solid-state NMR meets electron diffraction: determination of crystalline polymorphs of small organic microcrystalline samples. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 219-228.	0.5	7
48	Resolution enhancement in proton double quantum magic-angle spinning spectra by constant-time acquisition. Solid State Nuclear Magnetic Resonance, 2017, 87, 104-110.	2.3	10
49	Exploring the salt–cocrystal continuum with solid-state NMR using natural-abundance samples: implications for crystal engineering. IUCrJ, 2017, 4, 466-475.	2.2	60
50	3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning. Journal of Physical Chemistry B, 2017, 121, 5944-5952.	2.6	16
51	Chemical Reactions and Their Kinetics of <i>atactic</i> -Polyacrylonitrile As Revealed by Solid-State ¹³ C NMR. Macromolecules, 2017, 50, 244-253.	4.8	39
52	Engineering Codrug Solid Forms: Mechanochemical Synthesis of an Indomethacin–Caffeine System. Crystal Growth and Design, 2017, 17, 5744-5752.	3.0	46
53	Electrostatic Constraints Assessed by ¹ H MAS NMR Illuminate Differences in Crystalline Polymorphs. Journal of Physical Chemistry Letters, 2017, 8, 4253-4257.	4.6	15
54	Hierarchical Self-Organization of AB _{<i>n</i>} Dendron-like Molecules into a Supramolecular Lattice Sequence. ACS Central Science, 2017, 3, 860-867.	11.3	69

#	Article	IF	CITATIONS
55	Role of Anomalous Water Constraints in the Efficacy of Pharmaceuticals Probed by 1 H Solidâ€State NMR. ChemistrySelect, 2017, 2, 6797-6800.	1.5	12
56	Revealing the Local Proton Network through Three-Dimensional 13C/1H Double-Quantum/1H Single-Quantum and 1H Double-Quantum/13C/1H Single-Quantum Correlation Fast Magic-Angle Spinning Solid-State NMR Spectroscopy at Natural Abundance. Journal of Physical Chemistry B, 2017, 121, 8123-8131.	2.6	6
57	Capillary-Inserted Rotor Design for HRµMAS NMR-Based Metabolomics on Mass-Limited Neurospheres. Molecules, 2017, 22, 1289.	3.8	4
58	Fast magic-angle sample spinning solid-state NMR at 60–100 kHz for natural abundance samples. Solid State Nuclear Magnetic Resonance, 2016, 78, 24-36.	2.3	122
59	Understanding the Origins of Nucleophilic Hydride Reactivity of a Sodium Hydride–lodide Composite. Chemistry - A European Journal, 2016, 22, 7108-7114.	3.3	44
60	Sensitivity enhanced 14N/14N correlations to probe inter-beta-sheet interactions using fast magic angle spinning solid-state NMR in biological solids. Physical Chemistry Chemical Physics, 2016, 18, 22583-22589.	2.8	16
61	Fast Magic-Angle Spinning Three-Dimensional NMR Experiment for Simultaneously Probing H—H and N—H Proximities in Solids. Analytical Chemistry, 2016, 88, 11412-11419.	6.5	38
62	Ultrafast Magicâ€Angle Spinning: Benefits for the Acquisition of Ultrawideâ€Line NMR Spectra of Heavy Spin―Nuclei. ChemPhysChem, 2016, 17, 812-816.	2.1	24
63	Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application. Journal of the American Chemical Society, 2016, 138, 8505-8511.	13.7	146
64	Two-dimensional proton-detected $\langle \sup 35 \langle \sup Cl / \sup 1 \langle \sup H $ correlation solid-state NMR experiment under fast magic angle sample spinning: application to pharmaceutical compounds. Physical Chemistry Chemical Physics, 2016, 18, 6209-6216.	2.8	46
65	Accurate NMR determination of C–H or N–H distances for unlabeled molecules. Solid State Nuclear Magnetic Resonance, 2016, 73, 15-21.	2.3	27
66	Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz. Journal of Chemical Physics, 2015, 143, 164201.	3.0	16
67	High-resolution NMR-based metabolic detection of microgram biopsies using a 1 mm HRνMAS probe. Analyst, The, 2015, 140, 8097-8100.	3.5	17
68	Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond. Solid State Nuclear Magnetic Resonance, 2015, 72, 9-16.	2.3	35
69	Determination of NH proton chemical shift anisotropy with 14 N– 1 H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR. Journal of Magnetic Resonance, 2015, 261, 133-140.	2.1	25
70	Intermolecular Packing in <i>B. mori</i> Silk Fibroin: Multinuclear NMR Study of the Model Peptide (Ala-Gly) ₁₅ Defines a Heterogeneous Antiparallel Antipolar Mode of Assembly in the Silk II Form. Macromolecules, 2015, 48, 28-36.	4.8	43
71	1020 MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy. Journal of Magnetic Resonance, 2015, 261, 1-5.	2.1	38
72	Determination of relative orientation between 1H CSA tensors from a 3D solid-state NMR experiment mediated through 1H/1H RFDR mixing under ultrafast MAS. Solid State Nuclear Magnetic Resonance, 2015, 70, 15-20.	2.3	20

#	Article	lF	CITATIONS
73	Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling. PLoS ONE, 2015, 10, e0122714.	2.5	16
74	Difference in the structures of alanine tri―and tetraâ€peptides with antiparallel βâ€sheet assessed by Xâ€ray diffraction, solidâ€state NMR and chemical shift calculations by GIPAW. Biopolymers, 2014, 101, 13-20.	2.4	24
75	Rapid measurement of multidimensional 1H solid-state NMR spectra at ultra-fast MAS frequencies. Journal of Magnetic Resonance, 2014, 239, 75-80.	2.1	57
76	Insights into the functional group transformation of a chinese brown coal during slow pyrolysis by combining various experiments. Fuel, 2014, 118, 257-264.	6.4	163
77	Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning. Accounts of Chemical Research, 2013, 46, 2127-2135.	15.6	83
78	Analysis of water in Loy Yang brown coal using solid-state 1H NMR. Journal of Industrial and Engineering Chemistry, 2013, 19, 1673-1679.	5.8	21
79	Determination of Accurate ¹ H Positions of (Ala-Gly)n as a Sequential Peptide Model of Bombyx mori Silk Fibroin before Spinning (Silk I). Macromolecules, 2013, 46, 8046-8050.	4.8	31
80	lodine Transfer Terpolymerization of Vinylidene Fluoride, \hat{l} ±-Trifluoromethacrylic Acid and Hexafluoropropylene for Exceptional Thermostable Fluoropolymers/Silica Nanocomposites. Macromolecules, 2011, 44, 1114-1124.	4.8	56
81	Preparation of Novel Fluoroalkyl End-Capped Trimethoxyvinylsilane Oligomeric Nanoparticle-Encapsulated Binaphthol: Encapsulated Binaphthol Remaining Thermally Stable Even at 800 ŰC. Bulletin of the Chemical Society of Japan, 2010, 83, 75-81.	3.2	16
82	Fluoroalkyl end-capped oligomers possessing nonflammable and flammable characteristics in silica gel matrices after calcination at 800 °C under atmospheric conditions. Polymer Journal, 2010, 42, 167-171.	2.7	24
83	Fluoroalkyl endâ€capped oligomer possessing a nonflammable characteristic in silica gel matrices even at 800°C under atmospheric conditions. Journal of Applied Polymer Science, 2009, 112, 3482-3487.	2.6	19
84	Characterization of local structures in amorphous and crystalline tris(8-hydroxyquinoline) aluminum(III) (Alq3) by solid-state 27Al MQMAS NMR spectroscopy. Chemical Physics Letters, 2009, 471, 80-84.	2.6	17
85	2D NMR Observation of Strain-Induced \hat{l}^2 -Form in Poly[(R)-3-hydroxybutyrate]. Macromolecules, 2006, 39, 4086-4092.	4.8	17