
Sanja Sever

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10222572/publications.pdf Version: 2024-02-01

SANIA SEVED

#	Article	IF	CITATIONS
1	Simultaneous stabilization of actin cytoskeleton in multiple nephron-specific cells protects the kidney from diverse injury. Nature Communications, 2022, 13, 2422.	12.8	9
2	Role of actin cytoskeleton in podocytes. Pediatric Nephrology, 2021, 36, 2607-2614.	1.7	11
3	A Novel Fluorogenic Assay for the Detection of Nephrotoxin-Induced Oxidative Stress in Live Cells and Renal Tissue. ACS Sensors, 2021, 6, 2523-2528.	7.8	7
4	Soluble Urokinase Receptor and Acute Kidney Injury. New England Journal of Medicine, 2020, 382, 416-426.	27.0	149
5	uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. Journal of Clinical Investigation, 2019, 129, 1946-1959.	8.2	48
6	Actin dynamics at focal adhesions: a common endpoint and putative therapeutic target for proteinuric kidney diseases. Kidney International, 2018, 93, 1298-1307.	5.2	59
7	Rituximab and Therapeutic Plasma Exchange in Recurrent Focal Segmental Glomerulosclerosis Postkidney Transplantation. Transplantation, 2018, 102, e115-e120.	1.0	50
8	Cardiovascular Disease Biomarkers and suPAR in Predicting Decline in Renal Function: A Prospective Cohort Study. Kidney International Reports, 2017, 2, 425-432.	0.8	23
9	Soluble Urokinase Plasminogen Activator Receptor and Outcomes in Patients with Diabetes on Hemodialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1265-1273.	4.5	23
10	Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nature Medicine, 2017, 23, 100-106.	30.7	121
11	Association of Serum Soluble Urokinase Receptor Levels With Progression of Kidney Disease in Children. JAMA Pediatrics, 2017, 171, e172914.	6.2	46
12	A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nature Medicine, 2017, 23, 945-953.	30.7	176
13	Dynamin Autonomously Regulates Podocyte Focal Adhesion Maturation. Journal of the American Society of Nephrology: JASN, 2017, 28, 446-451.	6.1	26
14	Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nature Communications, 2016, 7, 12799.	12.8	25
15	Drugs targeting dynamin can restore cytoskeleton and focal contact alterations of urinary podocytes derived from patients with nephrotic syndrome. Annals of Translational Medicine, 2016, 4, 439-439.	1.7	6
16	A Podocyte-Based Automated Screening Assay Identifies Protective Small Molecules. Journal of the American Society of Nephrology: JASN, 2015, 26, 2741-2752.	6.1	53
17	Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nature Medicine, 2015, 21, 601-609.	30.7	100
18	Soluble Urokinase Receptor and Chronic Kidney Disease. New England Journal of Medicine, 2015, 373, 1916-1925.	27.0	338

SANJA SEVER

#	Article	IF	CITATIONS
19	CD2AP, Dendrin, and Cathepsin L in the Kidney. American Journal of Pathology, 2015, 185, 3129-3130.	3.8	7
20	The Grand Challenge of Nephrology. Frontiers in Medicine, 2014, 1, 28.	2.6	3
21	Regulation of Dynamin Oligomerization in Cells: The Role of Dynamin–Actin Interactions and Its <scp>GTPase</scp> Activity. Traffic, 2014, 15, 819-838.	2.7	45
22	Signal transduction in podocytes—spotlight on receptor tyrosine kinases. Nature Reviews Nephrology, 2014, 10, 104-115.	9.6	24
23	Reduction of Proteinuria through Podocyte Alkalinization. Journal of Biological Chemistry, 2014, 289, 17454-17467.	3.4	12
24	Transient Receptor Potential Channel 6 (TRPC6) Protects Podocytes during Complement-mediated Glomerular Disease. Journal of Biological Chemistry, 2013, 288, 36598-36609.	3.4	49
25	Podocyte Biology and Pathogenesis of Kidney Disease. Annual Review of Medicine, 2013, 64, 357-366.	12.2	170
26	Is There Clinical Value in Measuring suPAR Levels in FSGS?. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1273-1275.	4.5	24
27	Dynamin Rings: Not Just for Fission. Traffic, 2013, 14, 1194-1199.	2.7	44
28	CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. Journal of Clinical Investigation, 2012, 122, 780-780.	8.2	3
29	CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. Journal of Clinical Investigation, 2011, 121, 3965-3980.	8.2	124
30	Direct dynamin–actin interactions regulate the actin cytoskeleton. EMBO Journal, 2010, 29, 3593-3606.	7.8	202
31	Synaptotagmin-mediated vesicle fusion regulates cell migration. Nature Immunology, 2010, 11, 495-502.	14.5	101
32	Nucleoside diphosphate kinase Nm23-H1 regulates chromosomal stability by activating the GTPase dynamin during cytokinesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15461-15466.	7.1	31
33	Establishment of Protein Delivery Systems Targeting Podocytes. PLoS ONE, 2010, 5, e11837.	2.5	9
34	CD2AP Structure And Progression Of Renal Disease. Biophysical Journal, 2009, 96, 132a-133a.	0.5	0
35	Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. Journal of Clinical Investigation, 2007, 117, 2095-2104.	8.2	188
36	Physical and functional connection between auxilin and dynamin during endocytosis. EMBO Journal, 2006, 25, 4163-4174.	7.8	29

SANJA SEVER

#	Article	IF	CITATIONS
37	Dynasore puts a new spin on dynamin: a surprising dual role during vesicle formation. Trends in Cell Biology, 2006, 16, 607-609.	7.9	24
38	The Low Density Lipoprotein Receptor-related Protein (LRP) Is a Novel β-Secretase (BACE1) Substrate. Journal of Biological Chemistry, 2005, 280, 17777-17785.	3.4	228
39	Assays and Functional Properties of Auxilinâ€Dynamin Interactions. Methods in Enzymology, 2005, 404, 570-585.	1.0	5
40	Auxilin-Dynamin Interactions Link the Uncoating ATPase Chaperone Machinery with Vesicle Formation. Developmental Cell, 2003, 4, 929-940.	7.0	86
41	AP-2 Makes Room for Rivals. Developmental Cell, 2003, 5, 530-532.	7.0	6
42	Dynamin and endocytosis. Current Opinion in Cell Biology, 2002, 14, 463-467.	5.4	119
43	[47] Expression, purification, and functional assays for self-association of dynamin-1. Methods in Enzymology, 2001, 329, 447-457.	1.0	21
44	Garrotes, Springs, Ratchets, and Whips: Putting Dynamin Models to the Test. Traffic, 2000, 1, 385-392.	2.7	195
45	Dynamin:Gtp Controls the Formation of Constricted Coated Pits, the Rate Limiting Step in Clathrin-Mediated Endocytosis. Journal of Cell Biology, 2000, 150, 1137-1148.	5.2	212
46	Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature, 1999, 398, 481-486.	27.8	349