

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10221727/publications.pdf Version: 2024-02-01

Снаот

#	Article	IF	CITATIONS
1	The mitigation effects of exogenous melatonin on salinityâ€induced stress in <i>Malus hupehensis</i> . Journal of Pineal Research, 2012, 53, 298-306.	7.4	444
2	Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 2015, 66, 669-680.	4.8	371
3	Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress. Frontiers in Plant Science, 2017, 8, 480.	3.6	148
4	Exogenous melatonin improved potassium content in <i>Malus</i> under different stress conditions. Journal of Pineal Research, 2016, 61, 218-229.	7.4	116
5	Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiology and Biochemistry, 2020, 149, 245-255.	5.8	89
6	Effects of Exogenous Dopamine on the Uptake, Transport, and Resorption of Apple Ionome Under Moderate Drought. Frontiers in Plant Science, 2018, 9, 755.	3.6	81
7	Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis. Plant Physiology and Biochemistry, 2017, 119, 346-359.	5.8	79
8	Dopamine alleviates saltâ€induced stress in <i>Malus hupehensis</i> . Physiologia Plantarum, 2015, 153, 584-602.	5.2	76
9	Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Plant Cell Reports, 2016, 35, 329-346.	5.6	72
10	Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiology and Biochemistry, 2020, 148, 260-272.	5.8	65
11	The mitigation effects of exogenous melatonin on replant disease in apple. Journal of Pineal Research, 2018, 65, e12523.	7.4	56
12	Melatonin increases the performance of Malus hupehensis after UV-B exposure. Plant Physiology and Biochemistry, 2019, 139, 630-641.	5.8	55
13	Functions of dopamine in plants: a review. Plant Signaling and Behavior, 2020, 15, 1827782.	2.4	54
14	De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering. BMC Genomics, 2016, 17, 389.	2.8	53
15	Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). Frontiers in Plant Science, 2015, 6, 399.	3.6	51
16	Overexpression of a Novel Apple NAC Transcription Factor Gene, MdNAC1, Confers the Dwarf Phenotype in Transgenic Apple (Malus domestica). Genes, 2018, 9, 229.	2.4	44
17	Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Scientific Reports, 2016, 6, 21652.	3.3	42
18	Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress. BMC Plant Biology, 2018, 18, 136.	3.6	42

Chao Li

#	Article	IF	CITATIONS
19	Effects of Exogenous Melatonin on Methyl Viologen-Mediated Oxidative Stress in Apple Leaf. International Journal of Molecular Sciences, 2018, 19, 316.	4.1	42
20	MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings. Plant Science, 2020, 299, 110611.	3.6	42
21	Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis. Frontiers in Plant Science, 2016, 07, 1390.	3.6	41
22	Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.). Frontiers in Plant Science, 2017, 8, 1192.	3.6	41
23	Genome-Wide Analysis and Cloning of the Apple Stress-Associated Protein Gene Family Reveals MdSAP15, Which Confers Tolerance to Drought and Osmotic Stresses in Transgenic Arabidopsis. International Journal of Molecular Sciences, 2018, 19, 2478.	4.1	40
24	Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis. Plant Physiology and Biochemistry, 2013, 70, 164-173.	5.8	37
25	Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.). PLoS ONE, 2016, 11, e0161073.	2.5	35
26	Exogenous Dopamine Application Promotes Alkali Tolerance of Apple Seedlings. Plants, 2019, 8, 580.	3.5	34
27	Aquaporin expression in response to water-deficit stress in two Malus species: relationship with physiological status and drought tolerance. Plant Growth Regulation, 2013, 70, 187-197.	3.4	33
28	Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.). Frontiers in Plant Science, 2015, 6, 293.	3.6	32
29	Dopamine and arbuscular mycorrhizal fungi act synergistically to promote apple growth under salt stress. Environmental and Experimental Botany, 2020, 178, 104159.	4.2	32
30	Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.). Frontiers in Plant Science, 2016, 7, 682.	3.6	26
31	Introducing melatonin to the horticultural industry: physiological roles, potential applications, and challenges. Horticulture Research, 2022, 9, .	6.3	25
32	The mitigation effects of exogenous dopamine on low nitrogen stress in Malus hupehensis. Journal of Integrative Agriculture, 2020, 19, 2709-2724.	3.5	24
33	Physiological responses and tolerance to NaCl stress in different biotypes of Malus prunifolia. Euphytica, 2013, 189, 101-109.	1.2	23
34	Overexpression of <i>MdIAA24</i> improves apple drought resistance by positively regulating strigolactone biosynthesis and mycorrhization. Tree Physiology, 2021, 41, 134-146.	3.1	23
35	Overexpression of the tyrosine decarboxylase gene MdTyDC confers salt tolerance in apple. Environmental and Experimental Botany, 2020, 180, 104244.	4.2	21
36	MdTyDc Overexpression Improves Alkalinity Tolerance in Malus domestica. Frontiers in Plant Science, 2021, 12, 625890.	3.6	17

Chao Li

#	Article	IF	CITATIONS
37	Genome-wide analyses of genes encoding FK506-binding proteins reveal their involvement in abiotic stress responses in apple. BMC Genomics, 2018, 19, 707.	2.8	16
38	Overexpression of MpCYS4 , a phytocystatin gene from Malus prunifolia (Willd.) Borkh., delays natural and stress-induced leaf senescence in apple. Plant Physiology and Biochemistry, 2017, 115, 219-228.	5.8	15
39	Exogenous dopamine and overexpression of the dopamine synthase gene <i>MdTYDC</i> alleviated apple replant disease. Tree Physiology, 2021, 41, 1524-1541.	3.1	15
40	Overexpression of <i>MdVQ37</i> reduces drought tolerance by altering leaf anatomy and SA homeostasis in transgenic apple. Tree Physiology, 2022, 42, 160-174.	3.1	15
41	Overexpression of the tyrosine decarboxylase gene MdTyDC in apple enhances long-term moderate drought tolerance and WUE. Plant Science, 2021, 313, 111064.	3.6	14
42	Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization. Horticulture Research, 2021, 8, 84.	6.3	11
43	Overexpression of <i>MdIAA9</i> confers high tolerance to osmotic stress in transgenic tobacco. PeerJ, 2019, 7, e7935.	2.0	11
44	Heterologous Expression of the Melatonin-Related Gene HIOMT Improves Salt Tolerance in Malus domestica. International Journal of Molecular Sciences, 2021, 22, 12425.	4.1	11
45	Differences in the Efficiency of Potassium (K) Uptake and Use in Five Apple Rootstock Genotypes. Journal of Integrative Agriculture, 2014, 13, 1934-1942.	3.5	10
46	Silencing MdGH3-2/12 in apple reduces cadmium resistance via the regulation of AM colonization. Chemosphere, 2021, 269, 129407.	8.2	8
47	Arginine Increases Tolerance to Nitrogen Deficiency in Malus hupehensis via Alterations in Photosynthetic Capacity and Amino Acids Metabolism. Frontiers in Plant Science, 2021, 12, 772086.	3.6	8
48	Dopamine Enhances the Resistance of Apple to <i>Valsa mali</i> Infection. Phytopathology, 2022, 112, 1141-1151.	2.2	7
49	Comparative Metabolic Study of Two Contrasting Chinese Cabbage Genotypes under Mild and Severe Drought Stress. International Journal of Molecular Sciences, 2022, 23, 5947.	4.1	6
50	Comprehensive genomic analysis and expression profiling of Argonaute gene family and examination of their regulatory roles in water-use efficiency and abiotic stress responses in apple. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	5
51	Exogenous Dopamine and <i>MdTyDC</i> Overexpression Enhance Apple Resistance to <i>Fusarium solani</i> . Phytopathology, 2022, 112, 2503-2513.	2.2	5
52	Induction of polyploid <i>Malus prunifolia</i> and analysis of its salt tolerance. Tree Physiology, 2022, , .	3.1	4