Pavel S Volegov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1022086/publications.pdf

Version: 2024-02-01

1163117 1125743 31 181 8 13 citations h-index g-index papers 31 31 31 48 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Analysis of the dislocations and grain boundaries interaction in copper depending on the misorientation and boundary type. AIP Conference Proceedings, 2018, , .	0.4	1
2	MODELS OF MOLECULAR DYNAMICS: A REVIEW OF EAM-POTENTIALS. PART 2. POTENTIALS FOR MULTI-COMPONENT SYSTEMS. PNRPU Mechanics Bulletin, 2018, , .	0.4	0
3	Damage and fracture: Classical continuum theories. Physical Mesomechanics, 2017, 20, 157-173.	1.9	18
4	Damage and fracture: Crystal plasticity models. Physical Mesomechanics, 2017, 20, 174-184.	1.9	7
5	The study of grain boundary structure using molecular dynamics method. AIP Conference Proceedings, 2017, , .	0.4	1
6	MODELS OF MOLECULAR DYNAMICS: A REVIEW OF EAM POTENTIALS. PART 1: POTENTIALS FOR SINGLE-COMPONENT SYSTEMS. PNRPU Mechanics Bulletin, 2017, , .	0.4	1
7	Modeling of crystal lattice rotations with the description of grain fragmentation under intensive inelastic deformation. AIP Conference Proceedings, $2016, \ldots$	0.4	O
8	Damage and fracture: Review of experimental studies. Physical Mesomechanics, 2016, 19, 319-331.	1.9	10
9	Two-scale models of polycrystals: Evaluation of validity of llyushin's isotropy postulate at large displacement gradients. Physical Mesomechanics, 2016, 19, 21-34.	1.9	11
10	Research of complex loading of polycrystals with consideration for internal structure evolution. AIP Conference Proceedings, $2016, \ldots$	0.4	0
11	Research of the crystal lattice rotation influence on the distribution of residual mesostresses using the model of inelastic deformation of polycrystals. AIP Conference Proceedings, 2016, , .	0.4	O
12	Description of grain lattice rotation and fragmentation mechanisms using crystal plasticity. AIP Conference Proceedings, $2016, \ldots$	0.4	1
13	Mathematical modeling of grain boundary hardening in two-phase materials. AIP Conference Proceedings, 2016, , .	0.4	O
14	Investigation of the grain size influence on hardening in polycrystals using the two-level model based on crystal plasticity. AIP Conference Proceedings, 2015 , , .	0.4	0
15	Investigation of the features of polycrystals complex loading using a two-level crystal plasticity theory. IOP Conference Series: Materials Science and Engineering, 2015, 71, 012071.	0.6	0
16	Twoâ€level models of polycrystalline elastoviscoplasticity: Complex loading under large deformations. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2015, 95, 1067-1080.	1.6	3
17	Polycrystals multilevel models using crystal plasticity: consistency of constitutive equations at different scale levels. Journal of Physics: Conference Series, 2014, 490, 012166.	0.4	0
18	Two-scale models of polycrystals: Analysis of complex loading. Physical Mesomechanics, 2014, 17, 349-355.	1.9	8

#	Article	IF	Citations
19	Residual Meso Stresses in Multilevel Crystal Plasticity Models. Advanced Materials Research, 2014, 1040, 576-580.	0.3	1
20	Two-scale models of polycrystals: Independence of the loading process image of a representative macrovolume. Physical Mesomechanics, 2014, 17, 190-198.	1.9	4
21	Two-scale models of polycrystals: Macroscale motion decomposition. Physical Mesomechanics, 2014, 17, 116-122.	1.9	8
22	Multilevel models of polycrystals using crystal plasticity: investigation of hardening laws influence on the macro effects of cyclic loading. Journal of Physics: Conference Series, 2014, 490, 012037.	0.4	1
23	Multilevel model of inelastic deformation of FCC polycrystalline with description of structure evolution. Computational Materials Science, 2013, 79, 429-441.	3.0	17
24	Multilevel models of inelastic deformation of materials and their application for description of internal structure evolution. Physical Mesomechanics, 2012, 15, 155-175.	1.9	55
25	Asymmetric crystal plasticity theory for the evolution of polycrystal microstructures. Physical Mesomechanics, 2012, 15, 58-68.	1.9	5
26	Constitutive relations and their application to the description of microstructure evolution. Physical Mesomechanics, 2010, 13, 38-46.	1.9	16
27	Internal variable constitutive relations and their application to description of hardening in single crystals. Physical Mesomechanics, 2010, 13, 152-158.	1.9	11
28	Two-Level Model of Inelastic Deformation of FCC Polycrystals and Structure Evolution Description. Advanced Materials Research, 0, 1013, 249-256.	0.3	1
29	Viscoelastoplastic Model of FCC Monocrystals Deformation: Identification of Parameters. Advanced Materials Research, 0, 1040, 625-630.	0.3	0
30	Multilevel Models of Polycrystalline Metals: Application for Cyclic Loading Description. Solid State Phenomena, 0, 243, 155-162.	0.3	0
31	Modeling the Formation of Grain Boundaries as a Result of Two-Sided Crystallization Using Molecular Dynamics. Key Engineering Materials, 0, 743, 181-186.	0.4	1