
Abdollah Saboori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1021847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening. Journal of Magnesium and Alloys, 2022, 10, 3267-3280.	5.5	32
2	A comparative study of dry and cryogenic milling for Directed Energy Deposited IN718 components: effect on process and part quality. International Journal of Advanced Manufacturing Technology, 2022, 119, 745-758.	1.5	15
3	An investigation on the processing conditions of Ti-6Al-2Sn-4Zr-2Mo by electron beam powder bed fusion: Microstructure, defect distribution, mechanical properties and dimensional accuracy. Additive Manufacturing, 2022, 50, 102564.	1.7	8
4	The role of substrate preheating on the microstructure, roughness, and mechanical performance of AISI 316L produced by directed energy deposition additive manufacturing. International Journal of Advanced Manufacturing Technology, 2022, 119, 7159-7174.	1.5	13
5	Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities. Acta Metallurgica Sinica (English Letters), 2022, 35, 1453-1464.	1.5	8
6	In-situ alloying of a fine grained fully equiaxed Ti-based alloy via electron beam powder bed fusion additive manufacturing process. Additive Manufacturing, 2022, 56, 102878.	1.7	2
7	Effect of Aging and Cooling Path on the Super β-Transus Heat-Treated Ti-6Al-4V Alloy Produced via Electron Beam Melting (EBM). Materials, 2022, 15, 4067.	1.3	5
8	Hybrid additive manufacturing of an electron beam powder bed fused Ti6Al4V by transient liquid phase bonding. Journal of Materials Research and Technology, 2022, 20, 180-194.	2.6	8
9	Comparative Insight into the Interfacial Phase Evolutions during Solution Treatment of Dissimilar Friction Stir Welded AA2198-AA7475 and AA2198-AA6013 Aluminum Sheets. Materials, 2021, 14, 1290.	1.3	22
10	A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions. Acta Metallurgica Sinica (English Letters), 2021, 34, 1173-1200.	1.5	44
11	Electron beam melting of Ti-6Al-4V lattice structures: correlation between post heat treatment and mechanical properties. International Journal of Advanced Manufacturing Technology, 2021, 116, 3535-3547.	1.5	12
12	In-situ alloying in laser-based additive manufacturing processes: A critical review. Journal of Alloys and Compounds, 2021, 872, 159567.	2.8	113
13	On the effect of rapid annealing on the microstructure and mechanical behavior of additively manufactured stainless steel by Laser Powder Bed Fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 828, 142109.	2.6	33
14	Fabrication and Characterization of the Modified EV31-Based Metal Matrix Nanocomposites. Metals, 2021, 11, 125.	1.0	6
15	Innovative Approach to Evaluate the Mechanical Performance of Ti–6Al–4V Lattice Structures Produced by Electron Beam Melting Process. Metals and Materials International, 2021, 27, 55-67.	1.8	30
16	Recent Progress in Beam-Based Metal Additive Manufacturing from a Materials Perspective: A Review of Patents. Journal of Materials Engineering and Performance, 2021, 30, 8689-8699.	1.2	12
17	On the processability of copper components via powder-based additive manufacturing processes: Potentials, challenges and feasible solutions. Journal of Manufacturing Processes, 2021, 72, 320-337.	2.8	32
18	The role of texturing and microstructure evolution on the tensile behavior of heat-treated Inconel 625 produced via laser powder bed fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 769, 138500.	2.6	101

Abdollah Saboori

#	Article	IF	CITATIONS
19	Laser powder bed fusion of a Zr-alloy: Tensile properties and biocompatibility. Materials Letters, 2020, 259, 126897.	1.3	34
20	Critical Features in the Microstructural Analysis of AISI 316L Produced By Metal Additive Manufacturing. Metallography, Microstructure, and Analysis, 2020, 9, 92-96.	0.5	19
21	The Influence of the Process Parameters on the Densification and Microstructure Development of Laser Powder Bed Fused Inconel 939. Metals, 2020, 10, 882.	1.0	28
22	The role of Directed Energy Deposition atmosphere mode on the microstructure and mechanical properties of 316L samples. Additive Manufacturing, 2020, 34, 101274.	1.7	25
23	Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review. Applied Sciences (Switzerland), 2020, 10, 3310.	1.3	105
24	Microstructural Evolutions and its Impact on the Corrosion Behaviour of Explosively Welded Al/Cu Bimetal. Metals, 2020, 10, 634.	1.0	42
25	An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139179.	2.6	101
26	Ti-6Al-4V lattice structures produced by EBM: Heat treatment and mechanical properties. Procedia CIRP, 2020, 88, 411-416.	1.0	13
27	Hot deformation behavior and flow stress modeling of Ti–6Al–4V alloy produced via electron beam melting additive manufacturing technology in single β-phase field. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139822.	2.6	55
28	Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review. Acta Metallurgica Sinica (English Letters), 2020, 33, 183-203.	1.5	75
29	On the Effect of Deposition Patterns on the Residual Stress, Roughness and Microstructure of AISI 316L Samples Produced by Directed Energy Deposition. Lecture Notes in Mechanical Engineering, 2020, , 206-212.	0.3	6
30	Effect of second-phase particles evolution and lattice transformations while ultrafine graining and annealing on the corrosion resistance and electrical conductivity of Al–Mn–Si alloy. Materials Research Express, 2019, 6, 1065d9.	0.8	26
31	Reactive spontaneous infiltration of Al-activated TiO2 by molten aluminum. Transactions of Nonferrous Metals Society of China, 2019, 29, 657-666.	1.7	7
32	Development of Novel AlSi10Mg Based Nanocomposites: Microstructure, Thermal and Mechanical Properties. Metals, 2019, 9, 1000.	1.0	5
33	An Overview of the Recent Developments in Metal Matrix Nanocomposites Reinforced by Graphene. Materials, 2019, 12, 2823.	1.3	61
34	An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by Directed Energy Deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138360.	2.6	104
35	Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Applied Sciences (Switzerland), 2019, 9, 3316.	1.3	265
36	How the nozzle position affects the geometry of the melt pool in directed energy deposition process. Powder Metallurgy, 2019, 62, 213-217.	0.9	20

Abdollah Saboori

#	Article	IF	CITATIONS
37	New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review. Materials, 2019, 12, 1007.	1.3	162
38	Laser Powder Bed Fusion of Inconel 718: Residual Stress Analysis Before and After Heat Treatment. Metals, 2019, 9, 1290.	1.0	75
39	Novel AM60-SiO2 Nanocomposite Produced via Ultrasound-Assisted Casting; Production and Characterization. Materials, 2019, 12, 3976.	1.3	12
40	Effect of Graphene Nanoplatelets on Microstructure and Mechanical Properties of AlSi10Mg Nanocomposites Produced by Hot Extrusion. Powder Metallurgy and Metal Ceramics, 2018, 56, 647-655.	0.4	16
41	A Novel Cu–GNPs Nanocomposite with Improved Thermal and Mechanical Properties. Acta Metallurgica Sinica (English Letters), 2018, 31, 148-152.	1.5	22
42	A Novel Approach to Enhance the Mechanical Strength and Electrical and Thermal Conductivity of Cu-GNP Nanocomposites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 333-345.	1.1	38
43	An Overview of Key Challenges in the Fabrication of Metal Matrix Nanocomposites Reinforced by Graphene Nanoplatelets. Metals, 2018, 8, 172.	1.0	55
44	Determination of critical condition for initiation of dynamic recrystallisation in Zr-1%Nb alloy. Journal of Alloys and Compounds, 2018, 757, 1-7.	2.8	9
45	Production of Single Tracks of Ti-6Al-4V by Directed Energy Deposition to Determine the Layer Thickness for Multilayer Deposition. Journal of Visualized Experiments, 2018, , .	0.2	16
46	An Overview of Metal Matrix Nanocomposites Reinforced with Graphene Nanoplatelets; Mechanical, Electrical and Thermophysical Properties. Metals, 2018, 8, 423.	1.0	57
47	Novel Magnesium Elektron21-AlN Nanocomposites Produced by Ultrasound-Assisted Casting; Microstructure, Thermal and Electrical Conductivity. Materials, 2018, 11, 27.	1.3	23
48	An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy. Journal of Materials Engineering and Performance, 2017, 26, 993-999.	1.2	53
49	Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization. Frontiers of Materials Science, 2017, 11, 171-181.	1.1	28
50	Hot deformation behavior of Zr-1%Nb alloy: Flow curve analysis and microstructure observations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 366-373.	2.6	19
51	Microstructure and Thermal Conductivity of Al–Graphene Composites Fabricated by Powder Metallurgy and Hot Rolling Techniques. Acta Metallurgica Sinica (English Letters), 2017, 30, 675-687.	1.5	74
52	Effect of Sample Preparation on the Microstructural Evaluation of Al–GNPs Nanocomposites. Metallography, Microstructure, and Analysis, 2017, 6, 619-622.	0.5	10
53	Studying the age hardening kinetics of A357 aluminum alloys through the Johnson–Mehl–Avrami theory. Metal Powder Report, 2017, 72, 420-424.	0.3	18
54	Effect of Solution Treatment on Precipitation Behaviors, Age Hardening Response and Creep Properties of Elektron21 Alloy Reinforced by AlN Nanoparticles. Materials, 2017, 10, 1380.	1.3	26

#	Article	IF	CITATIONS
55	New Nanocomposite Materials with Improved Mechanical Strength and Tailored Coefficient of Thermal Expansion for Electro-Packaging Applications. Metals, 2017, 7, 536.	1.0	28
56	An Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties. Applied Sciences (Switzerland), 2017, 7, 883.	1.3	240

5