Christian U Riedel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1021642/publications.pdf

Version: 2024-02-01

201575 182361 2,800 61 27 51 citations h-index g-index papers 66 66 66 3834 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recombinant production of the lantibiotic nisin using Corynebacterium glutamicum in a two-step process. Microbial Cell Factories, 2022, 21, 11.	1.9	13
2	Epithelial GPR35 protects from Citrobacter rodentium infection by preserving goblet cells and mucosal barrier integrity. Mucosal Immunology, 2022, 15, 443-458.	2.7	18
3	Improved fluorescent <i>Listeria</i> spp. biosensors for analysis of antimicrobials by flow cytometry. MicrobiologyOpen, 2022, 11, .	1.2	5
4	High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes. BMC Genomics, 2021, 22, 117.	1.2	18
5	In Silico Prediction and Analysis of Unusual Lantibiotic Resistance Operons in the Genus Corynebacterium. Microorganisms, 2021, 9, 646.	1.6	6
6	Analysis of temporal gene regulation of Listeria monocytogenes revealed distinct regulatory response modes after exposure to high pressure processing. BMC Genomics, 2021, 22, 266.	1.2	5
7	The complete genome sequence of Listeria monocytogenes strain S2542 and expression of selected genes under high-pressure processing. BMC Research Notes, 2021, 14, 137.	0.6	1
8	A Diffusion Model to Quantify Membrane Repair Process in Listeria monocytogenes Exposed to High Pressure Processing Based on Fluorescence Microscopy Data. Frontiers in Microbiology, 2021, 12, 598739.	1.5	5
9	Identification of Potential Probiotics Producing Bacteriocins Active against Listeria monocytogenes by a Combination of Screening Tools. International Journal of Molecular Sciences, 2021, 22, 8615.	1.8	14
10	Establishing recombinant production of pediocin PA-1 in Corynebacterium glutamicum. Metabolic Engineering, 2021, 68, 34-45.	3.6	15
11	Ubericin K, a New Pore-Forming Bacteriocin Targeting mannose-PTS. Microbiology Spectrum, 2021, 9, e0029921.	1.2	11
12	Genomic characterization of the most barotolerant Listeria monocytogenes RO15 strain compared to reference strains used to evaluate food high pressure processing. BMC Genomics, 2020, 21, 455.	1.2	14
13	Storage-Dependent Generation of Potent Anti-ZIKV Activity in Human Breast Milk. Viruses, 2019, 11, 591.	1.5	30
14	mir-124-5p Regulates Phagocytosis of Human Macrophages by Targeting the Actin Cytoskeleton via the ARP2/3 Complex. Frontiers in Immunology, 2019, 10, 2210.	2.2	14
15	Characterization of the biofilm phenotype of a Listeria monocytogenes mutant deficient in agr peptide sensing. MicrobiologyOpen, 2019, 8, e00826.	1.2	20
16	Induction of apoptosis in ovarian cancer cells by miR-493-3p directly targeting AKT2, STK38L, HMGA2, ETS1 and E2F5. Cellular and Molecular Life Sciences, 2019, 76, 539-559.	2.4	28
17	Clinical Significance of Bifidobacteria. , 2018, , 221-234.		1
18	Intracellular pHluorin as Sensor for Easy Assessment of Bacteriocin-Induced Membrane-Damage in Listeria monocytogenes. Frontiers in Microbiology, 2018, 9, 3038.	1.5	14

#	Article	IF	CITATIONS
19	Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Frontiers in Microbiology, 2018, 9, 2700.	1.5	183
20	In Vivo Assessment of Resistant Starch Degradation by the Caecal Microbiota of Mice Using RNA-Based Stable Isotope Probing—A Proof-of-Principle Study. Nutrients, 2018, 10, 179.	1.7	27
21	The Association of the Skin Microbiota With Health, Immunity, and Disease. Clinical Pharmacology and Therapeutics, 2017, 102, 62-69.	2.3	69
22	Effect of rotor type on the separation of isotope-labeled and unlabeled <i>Escherichia coli</i> RNA by isopycnic density ultracentrifugation. Canadian Journal of Microbiology, 2017, 63, 83-87.	0.8	8
23	Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing. Frontiers in Microbiology, 2017, 8, 1331.	1.5	38
24	RNA-Based Stable Isotope Probing Suggests <i>Allobaculum</i> spp. as Particularly Active Glucose Assimilators in a Complex Murine Microbiota Cultured In Vitro. BioMed Research International, 2017, 2017, 1-13.	0.9	56
25	Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miR-147b as a potential biomarker in ovarian cancer prognosis. Oncotarget, 2017, 8, 18773-18791.	0.8	22
26	Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions. Frontiers in Microbiology, 2016, 7, 97.	1.5	14
27	Identification of the agr Peptide of Listeria monocytogenes. Frontiers in Microbiology, 2016, 7, 989.	1.5	36
28	A Critical Evaluation of Bifidobacterial Adhesion to the Host Tissue. Frontiers in Microbiology, 2016, 7, 1220.	1.5	49
29	Manipulation of the Microbiota Using Probiotics. Advances in Experimental Medicine and Biology, 2016, 902, 109-117.	0.8	14
30	Development of an Antigen-driven Colitis Model to Study Presentation of Antigens by Antigen Presenting Cells to T Cells. Journal of Visualized Experiments, 2016, , .	0.2	0
31	Three-dimensional tumor spheroids for in vitro analysis of bacteria as gene delivery vectors in tumor therapy. Microbial Cell Factories, 2015, 14, 199.	1.9	21
32	DNase-Sensitive and -Resistant Modes of Biofilm Formation by Listeria monocytogenes. Frontiers in Microbiology, 2015, 6, 1428.	1.5	38
33	Al-2 to the rescue against antibiotic-induced intestinal dysbiosis?. Trends in Microbiology, 2015, 23, 327-328.	3.5	15
34	A Phytase-Based Reporter System for Identification of Functional Secretion Signals in Bifidobacteria. PLoS ONE, 2015, 10, e0128802.	1.1	18
35	Colonization of C57BL/6 Mice by a Potential Probiotic Bifidobacterium bifidum Strain under Germ-Free and Specific Pathogen-Free Conditions and during Experimental Colitis. PLoS ONE, 2015, 10, e0139935.	1.1	41
36	Experimental determination and characterization of thegappromoter of Bifidobacterium bifidum S17. Bioengineered, 2014, 5, 371-377.	1.4	22

3

#	Article	IF	Citations
37	Accessing the Inaccessible: Molecular Tools for Bifidobacteria. Applied and Environmental Microbiology, 2014, 80, 1807-1807.	1.4	0
38	Bifidobacteria-Host Interactions—An Update on Colonisation Factors. BioMed Research International, 2014, 2014, 1-10.	0.9	45
39	Proteomic analysis of the interaction of Bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. Journal of Proteomics, 2014, 108, 89-98.	1.2	40
40	Expression of Fluorescent Proteins in Bifidobacteria for Analysis of Host-Microbe Interactions. Applied and Environmental Microbiology, 2014, 80, 2842-2850.	1.4	31
41	Surface adhesins and exopolymers of selected foodborne pathogens. Microbiology (United Kingdom), 2014, 160, 2561-2582.	0.7	23
42	Adaptation of the lactic acid bacterium Carnobacterium maltaromaticum LMA 28 to the mammalian gastrointestinal tract: From survival in mice to interaction with human cells. International Dairy Journal, 2014, 34, 93-99.	1.5	10
43	Bifidobacteria Exhibit LuxS-Dependent Autoinducer 2 Activity and Biofilm Formation. PLoS ONE, 2014, 9, e88260.	1.1	63
44	Tough nuts to crack. Bioengineered, 2013, 4, 197-202.	1.4	23
45	High-Quality Draft Genome Sequence of Bifidobacterium longum E18, Isolated from a Healthy Adult. Genome Announcements, 2013, 1, .	0.8	7
46	CD14-Dependent Monocyte Isolation Enhances Phagocytosis of Listeria monocytogenes by Proinflammatory, GM-CSF-Derived Macrophages. PLoS ONE, 2013, 8, e66898.	1.1	41
47	Fructose Uptake in Bifidobacterium longum NCC2705 Is Mediated by an ATP-binding Cassette Transporter. Journal of Biological Chemistry, 2012, 287, 357-367.	1.6	19
48	Exploring the genome sequence of Bifidobacterium bifidum S17 for potential players in host-microbe interactions. Symbiosis, 2012, 58, 191-200.	1.2	14
49	Accessing the Inaccessible: Molecular Tools for Bifidobacteria. Applied and Environmental Microbiology, 2012, 78, 5035-5042.	1.4	30
50	Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA. Microbial Cell Factories, 2012, 11, 80.	1.9	46
51	Treatment with Bifidobacterium bifidum 17 partially protects mice from Th1-driven inflammation in a chemically induced model of colitis. International Journal of Food Microbiology, 2011 , 149 , $45-49$.	2.1	66
52	Proteomics analysis of <i>Bifidobacterium longum</i> NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose. Proteomics, 2011, 11, 2628-2638.	1.3	31
53	Bacterial luciferase reporters: The Swiss army knife of molecular biology. Bioengineered Bugs, 2011, 2, 8-16.	2.0	51
54	Complete Genome Sequence of Bifidobacterium bifidum S17. Journal of Bacteriology, 2011, 193, 301-302.	1.0	35

#	Article	IF	CITATION
55	Selection of Bifidobacteria Based on Adhesion and Anti-Inflammatory Capacity <i>In Vitro</i> for Amelioration of Murine Colitis. Applied and Environmental Microbiology, 2010, 76, 3048-3051.	1.4	70
56	AgrDâ€dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in <i>Listeria monocytogenes</i>). Molecular Microbiology, 2009, 71, 1177-1189.	1.2	158
57	Improved Luciferase Tagging System for Listeria monocytogenes Allows Real-Time Monitoring In Vivo and In Vitro. Applied and Environmental Microbiology, 2007, 73, 3091-3094.	1.4	101
58	Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7617-7621.	3.3	690
59	Construction of p16S <i>lux</i> , a Novel Vector for Improved Bioluminescent Labeling of Gram-Negative Bacteria. Applied and Environmental Microbiology, 2007, 73, 7092-7095.	1.4	84
60	Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-κB activation. World Journal of Gastroenterology, 2006, 12, 3729.	1.4	159
61	Interaction of bifidobacteria with Caco-2 cells—adhesion and impact on expression profiles. International Journal of Food Microbiology, 2006, 110, 62-68.	2.1	54