List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/102161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation, 2020, 141, 1393-1403.	1.6	176
2	Cardiovascular effects of relaxin: from basic science to clinical therapy. Nature Reviews Cardiology, 2010, 7, 48-58.	13.7	153
3	β ₂ -Adrenergic Receptor Overexpression Exacerbates Development of Heart Failure After Aortic Stenosis. Circulation, 2000, 101, 71-77.	1.6	130
4	Standardizing a simpler, more sensitive and accurate tail bleeding assay in mice. World Journal of Experimental Medicine, 2012, 2, 30.	1.7	128
5	Down-regulation of mitofusin-2 expression in cardiac hypertrophy in vitro and in vivo. Life Sciences, 2007, 80, 2154-2160.	4.3	113
6	Reduced Myocardial Nerve Growth Factor Expression in Human and Experimental Heart Failure. Circulation Research, 2000, 86, E80-4.	4.5	111
7	Cardiac Fibrosis and Arrhythmogenesis. , 2017, 7, 1009-1049.		97
8	Gender modulates cardiac phenotype development in genetically modified mice. Cardiovascular Research, 2004, 63, 510-519.	3.8	88
9	Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Research, 2014, 24, 1271-1284.	5.5	79
10	Cardiac Â1-adrenergic drive in pathological remodelling. Cardiovascular Research, 2007, 77, 452-462.	3.8	69
11	Transgenic α1A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival. Cardiovascular Research, 2006, 71, 735-743.	3.8	63
12	Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110α) signaling. Free Radical Biology and Medicine, 2015, 87, 137-147.	2.9	63
13	Sympatholytic Action of Intravenous Amiodarone in the Rat Heart. Circulation, 1995, 91, 462-470.	1.6	61
14	Sex dimorphism in cardiac pathophysiology: Experimental findings, hormonal mechanisms, and molecular mechanisms. , 2006, 111, 434-475.		55
15	Chromatin modifications remodel cardiac gene expression. Cardiovascular Research, 2014, 103, 7-16.	3.8	55
16	Differential roles of cardiac and leukocyte derived macrophage migration inhibitory factor in inflammatory responses and cardiac remodelling post myocardial infarction. Journal of Molecular and Cellular Cardiology, 2014, 69, 32-42.	1.9	52
17	Adverse effects of constitutively active α1B-adrenergic receptors after pressure overload in mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1079-H1086.	3.2	49
18	Genetic Enhancement of Ventricular Contractility Protects against Pressure-Overload-Induced Cardiac Dysfunction. Journal of Molecular and Cellular Cardiology, 2004, 37, 979-987.	1.9	47

#	Article	IF	CITATIONS
19	Galectin-3 deficiency ameliorates fibrosis and remodeling in dilated cardiomyopathy mice with enhanced Mst1 signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H45-H60.	3.2	47
20	Mechanisms responsible for increased circulating levels of galectin-3 in cardiomyopathy and heart failure. Scientific Reports, 2018, 8, 8213.	3.3	42
21	<i>I</i> _f channel inhibitor ivabradine lowers heart rate in mice with enhanced sympathoadrenergic activities. British Journal of Pharmacology, 2004, 142, 107-112.	5.4	40
22	Improving the quality of preclinical research echocardiography: observations, training, and guidelines for measurement. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H58-H70.	3.2	37
23	Interplay of chromatin modifications and non-coding RNAs in the heart. Epigenetics, 2014, 9, 101-112.	2.7	36
24	Platelet-Targeted Delivery of Peripheral Blood Mononuclear Cells to the Ischemic Heart Restores Cardiac Function after Ischemia-Reperfusion Injury. Theranostics, 2017, 7, 3192-3206.	10.0	36
25	Activation of Hippo signaling pathway mediates mitochondria dysfunction and dilated cardiomyopathy in mice. Theranostics, 2021, 11, 8993-9008.	10.0	36
26	Spontaneous ventricular tachyarrhythmias in β ₂ -adrenoceptor transgenic mice in relation to cardiac interstitial fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H946-H957.	3.2	35
27	Preserved ventricular contractility in infarcted mouse heart overexpressing β ₂ -adrenergic receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2456-H2463.	3.2	31
28	Stimulation of βâ€adrenoceptors upâ€regulates cardiac expression of galectinâ€3 and <scp>BIM</scp> through the <scp>H</scp> ippo signalling pathway. British Journal of Pharmacology, 2019, 176, 2465-2481.	5.4	29
29	HMGB1 Induces Secretion of Matrix Vesicles by Macrophages to Enhance Ectopic Mineralization. PLoS ONE, 2016, 11, e0156686.	2.5	29
30	Relaxin mitigates microvascular damage and inflammation following cardiac ischemia–reperfusion. Basic Research in Cardiology, 2019, 114, 30.	5.9	28
31	K _{Ca} 3.1 Channels Promote Cardiac Fibrosis Through Mediating Inflammation and Differentiation of Monocytes Into Myofibroblasts in Angiotensin Il–Treated Rats. Journal of the American Heart Association, 2019, 8, e010418.	3.7	28
32	Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts. Cardiovascular Research, 2021, 117, 1091-1102.	3.8	27
33	Preserved left ventricular structure and function in mice with cardiac sympathetic hyperinnervation. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1359-H1365.	3.2	25
34	Reversal of Cardiac Fibrosis and Related Dysfunction by Relaxin. Annals of the New York Academy of Sciences, 2009, 1160, 278-284.	3.8	24
35	Chronic Administration of the Nitroxyl Donor 1-Nitrosocyclo Hexyl Acetate Limits Left Ventricular Diastolic Dysfunction in a Mouse Model of Diabetes Mellitus In Vivo. Circulation: Heart Failure, 2015, 8, 572-581.	3.9	20
36	Splenic release of platelets contributes to increased circulating platelet size and inflammation after myocardial infarction. Clinical Science, 2016, 130, 1089-1104.	4.3	20

#	Article	IF	CITATIONS
37	βâ€Adrenoceptor activation affects galectinâ€3 as a biomarker and therapeutic target in heart disease. British Journal of Pharmacology, 2019, 176, 2449-2464.	5.4	20
38	Microvascular leakage in acute myocardial infarction: characterization by histology, biochemistry, and magnetic resonance imaging. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1068-H1075.	3.2	19
39	Diabetes Reduces Severity of Aortic Aneurysms Depending on the Presence of Cell Division Autoantigen 1 (CDA1). Diabetes, 2018, 67, 755-768.	0.6	17
40	Serial changes of mean platelet volume in relation to Killip Class in patients with acute myocardial infarction and primary percutaneous coronary intervention. Thrombosis Research, 2015, 135, 652-658.	1.7	16
41	The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid. Experimental Cell Research, 2018, 369, 208-217.	2.6	16
42	Gal-3 (Galectin-3) and K _{Ca} 3.1 Mediate Heterogeneous Cell Coupling and Myocardial Fibrogenesis Driven by βAR (β-Adrenoceptor) Activation. Hypertension, 2020, 75, 393-404.	2.7	16
43	Cardiac βâ€adrenergic receptor activation mediates distinct and cell typeâ€dependent changes in the expression and distribution of connexin 43. Journal of Cellular and Molecular Medicine, 2020, 24, 8505-8517.	3.6	16
44	Cardiac rupture complicating acute myocardial infarction: the clinical features from an observational study and animal experiment. BMC Cardiovascular Disorders, 2020, 20, 409.	1.7	14
45	Oxidative stress induced by palmitic acid modulates KCa2.3 channels in vascular endothelium. Experimental Cell Research, 2019, 383, 111552.	2.6	10
46	DISTINCT ROLE OF ADRENOCEPTOR SUBTYPES IN CARDIAC ADAPTATION TO CHRONIC PRESSURE OVERLOAD. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 355-360.	1.9	9
47	Post-infarct cardiac injury, protection and repair: roles of non-cardiomyocyte multicellular and acellular components. Science China Life Sciences, 2018, 61, 266-276.	4.9	8
48	Manipulation of the gut microbiota by the use of prebiotic fibre does not override a genetic predisposition to heart failure. Scientific Reports, 2020, 10, 17919.	3.3	8
49	Reâ€modelling â€~hostile' milieu of diseased myocardium <i>via</i> paracrine function of transplanted cells or relaxin. Journal of Cellular and Molecular Medicine, 2007, 11, 1101-1104.	3.6	7
50	Age-Related Differential Structural and Transcriptomic Responses in the Hypertensive Heart. Frontiers in Physiology, 2018, 9, 817.	2.8	6
51	Association between heart rate variability indices and features of spontaneous ventricular tachyarrhythmias in mice. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1193-1202.	1.9	5
52	AMPK upregulates KCa2.3 channels and ameliorates endothelial dysfunction in diet-induced obese mice. Biochemical Pharmacology, 2021, 183, 114337.	4.4	5
53	Effects of presynaptic α-adrenoceptors and neuronal reuptake on noradrenaline overflow and cardiac response. European Journal of Pharmacology, 1992, 211, 221-226.	3.5	4
54	Pro-Inflammatory Role of Platelets in Hypertension-Mediated End-Organ Damage. Cardiovascular Drugs and Therapy, 2013, 27, 485-487.	2.6	4

#	Article	IF	CITATIONS
55	Pathological hypertrophy reverses <i>î²</i> ₂ -adrenergic receptor-induced angiogenesis in mouse heart. Physiological Reports, 2015, 3, e12340.	1.7	4
56	K _{Ca} 3.1 channel mediates inflammatory signaling of pancreatic β cells and progression of type 2 diabetes mellitus. FASEB Journal, 2019, 33, 14760-14771.	0.5	4
57	Sympatho-adrenergic mechanisms in heart failure: new insights into pathophysiology. Medical Review, 2021, 1, 47-77.	1.2	3
58	The Diagnostic and Prognostic Value of Plasma Galectin 3 in HFrEF Related to the Etiology of Heart Failure. Frontiers in Cardiovascular Medicine, 2021, 8, 748875.	2.4	1
59	Abstract 17001: Reconstituted High-density Lipoprotein (CSL-111) Infusion Improves Post-ischemic Heart Function Through Modulating the Acute Inflammatory Response and Angiogenesis. Circulation, 2015, 132, .	1.6	1
60	Reply to "Letter to the Editor: Not all modified citrus pectins are the same: size does matter― American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1234-H1235.	3.2	0
61	Post-infarct left ventricular thrombosis is mechanistically related to ventricular wall rupture. Medical Hypotheses, 2020, 144, 109938.	1.5	0