
## Sudam D Chavhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1021532/publications.pdf Version: 2024-02-01



SUDAM D CHAVHAN

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact.<br>Journal of Materials Chemistry A, 2014, 2, 12754-12760.                                                                 | 10.3 | 174       |
| 2  | Electrodeposition of Antimony Selenide Thin Films and Application in Semiconductor Sensitized Solar<br>Cells. ACS Applied Materials & Interfaces, 2014, 6, 2836-2841.                                                           | 8.0  | 113       |
| 3  | Colloidal PbS and PbSeS Quantum Dot Sensitized Solar Cells Prepared by Electrophoretic Deposition.<br>Journal of Physical Chemistry C, 2012, 116, 16391-16397.                                                                  | 3.1  | 81        |
| 4  | Structural evaluations and temperature dependent photoluminescence characterizations of<br>Eu3+-activated SrZrO3 hollow spheres for luminescence thermometry applications. Scientific Reports,<br>2016, 6, 25787.               | 3.3  | 44        |
| 5  | Passivation of ZnO Nanowire Guests and 3D Inverse Opal Host Photoanodes for Dye‣ensitized Solar<br>Cells. Advanced Energy Materials, 2014, 4, 1400217.                                                                          | 19.5 | 37        |
| 6  | NiO cathodic electrochemical deposition from an aprotic ionic liquid: Building metal oxide n–p<br>heterojunctions. Electrochimica Acta, 2012, 71, 39-43.                                                                        | 5.2  | 35        |
| 7  | Low temperature processed NiOx hole transport layers for efficient polymer solar cells. Organic<br>Electronics, 2017, 44, 59-66.                                                                                                | 2.6  | 24        |
| 8  | Sensitization of p-type NiO Using n-type Conducting Polymers. Journal of Physical Chemistry C, 2010, 114, 19496-19502.                                                                                                          | 3.1  | 23        |
| 9  | Enabling High-Efficiency Organic Light-Emitting Diode with Trifunctional Solution-Processable<br>Copper(I) Thiocyanate. Journal of Physical Chemistry C, 2018, 122, 18836-18840.                                                | 3.1  | 22        |
| 10 | Nanomorphology influence on the light conversion mechanisms in highly efficient<br>diketopyrrolopyrrole based organic solar cells. Organic Electronics, 2013, 14, 326-334.                                                      | 2.6  | 21        |
| 11 | Investigation of charge-transporting layers for high-efficiency organic light-emitting diode. Journal Physics D: Applied Physics, 2018, 51, 454002.                                                                             | 2.8  | 21        |
| 12 | Fluorene based amorphous hole transporting materials for solution processed organic light-emitting diodes. Organic Electronics, 2020, 79, 105633.                                                                               | 2.6  | 20        |
| 13 | High efficiency color-temperature tunable organic light-emitting diode. Journal of Materials<br>Chemistry C, 2019, 7, 15322-15334.                                                                                              | 5.5  | 18        |
| 14 | Short Alkyl Chain Engineering Modulation on Naphthalene Flanked Diketopyrrolopyrrole toward<br>Highâ€Performance Single Crystal Transistors and Organic Thin Film Displays. Advanced Electronic<br>Materials, 2021, 7, 2000804. | 5.1  | 18        |
| 15 | Naphthalimide end-capped diphenylacetylene: a versatile organic semiconductor for blue light<br>emitting diodes and a donor or an acceptor for solar cells. New Journal of Chemistry, 2019, 43,<br>9243-9254.                   | 2.8  | 15        |
| 16 | Pseudo-sunlight organic light-emitting diodes. Optics and Laser Technology, 2019, 112, 494-499.                                                                                                                                 | 4.6  | 6         |
| 17 | Liquid Exfoliation of Decagonal Quasicrystals and Its Light Out oupling Performance in Organic<br>Lightâ€Emitting Devices. Advanced Photonics Research, 2020, 1, 2000042.                                                       | 3.6  | 4         |
| 18 | Modification effect of hole injection layer on efficiency performance of wet-processed blue organic<br>light emitting diodes. Organic Electronics, 2021, 92, 106084.                                                            | 2.6  | 4         |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Back Migration Based Long Lifetime Approach for Organic Lightâ€Emitting Diode. Physica Status Solidi<br>(A) Applications and Materials Science, 2019, 216, 1800390. | 1.8 | 3         |