Xavier Grana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1021320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene, 1998, 17, 3365-3383.	5.9	336
2	PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3834-3838.	7.1	220
3	Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer. Cell, 2018, 175, 1244-1258.e26.	28.9	182
4	Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene, 2004, 337, 15-23.	2.2	158
5	Upregulation of cyclin T1/CDK9 complexes during T cell activation. Oncogene, 1998, 17, 3093-3102.	5.9	128
6	Proliferative Suppression by CDK4/6 Inhibition: Complex Function of the Retinoblastoma Pathway in Liver Tissue and Hepatoma Cells. Gastroenterology, 2010, 138, 1920-1930.e2.	1.3	114
7	Cyclin-Dependent Kinase 4 Expression Is Essential for Neu-Induced Breast Tumorigenesis. Cancer Research, 2005, 65, 10174-10178.	0.9	103
8	SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene, 2003, 22, 2443-2451.	5.9	98
9	CTIP2 is a negative regulator of P-TEFb. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12655-12660.	7.1	86
10	CDK9 Is Constitutively Expressed throughout the Cell Cycle, and Its Steady-State Expression Is Independent of SKP2. Molecular and Cellular Biology, 2003, 23, 5165-5173.	2.3	80
11	G1 Cyclin/Cyclin-dependent Kinase-coordinated Phosphorylation of Endogenous Pocket Proteins Differentially Regulates Their Interactions with E2F4 and E2F1 and Gene Expression. Journal of Biological Chemistry, 2002, 277, 50263-50274.	3.4	78
12	Differential regulation of the retinoblastoma family of proteins during cell proliferation and differentiation. Biochemical Journal, 1998, 333, 645-654.	3.7	76
13	Transcription of histone H4, H3, and H1 cell cycle genes: promoter factor HiNF-D contains CDC2, cyclin A, and an RB-related protein Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12882-12886.	7.1	63
14	The CDC2-related kinase PITALRE is the catalytic subunit of active multimeric protein complexes. Biochemical Journal, 1996, 319, 293-298.	3.7	55
15	Direct inhibition of CDK9 blocks HIV-1 replication without preventing T-cell activation in primary human peripheral blood lymphocytes. Gene, 2007, 405, 65-78.	2.2	52
16	PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Advances in Cancer Research, 2019, 144, 55-93.	5.0	52
17	Cyclin T1 Expression Is Regulated by Multiple Signaling Pathways and Mechanisms during Activation of Human Peripheral Blood Lymphocytes. Journal of Immunology, 2005, 175, 6402-6411.	0.8	50
18	A Dynamic Equilibrium between CDKs and PP2A Modulates Phosphorylation of pRB, p107 and p130. Cell Cycle, 2004, 3, 1320-1330.	2.6	47

XAVIER GRANA

#	Article	IF	CITATIONS
19	Mechanisms controlling CDK9 activity. Frontiers in Bioscience - Landmark, 2006, 11, 2598.	3.0	45
20	Selective control of gene expression by CDK9 in human cells. Journal of Cellular Physiology, 2010, 222, 200-208.	4.1	45
21	PP2A holoenzymes negatively and positively regulate cell cycle progression by dephosphorylating pocket proteins and multiple CDK substrates. Gene, 2012, 499, 1-7.	2.2	43
22	The p130 pocket protein keeping order at cell cycle exit re-entrance transitions. Frontiers in Bioscience - Landmark, 1998, 3, d11-24.	3.0	38
23	PP2A: more than a reset switch to activate pRB proteins during the cell cycle and in response to signaling cues. Cell Cycle, 2015, 14, 18-30.	2.6	37
24	B55α PP2A Holoenzymes Modulate the Phosphorylation Status of the Retinoblastoma-related Protein p107 and Its Activation. Journal of Biological Chemistry, 2010, 285, 29863-29873.	3.4	33
25	Phosphorylation site specificity of the CDC2-related kinase PITALRE. Biochemical Journal, 1996, 320, 983-989.	3.7	27
26	Purification, characterization and immunological properties of 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from maize (Zea mays) seeds. FEBS Journal, 1989, 186, 149-153.	0.2	26
27	Requirement of Cdk4 for v-Ha-ras-Induced Breast Tumorigenesis and Activation of the v-ras-Induced Senescence Program by the R24C Mutation. Genes and Cancer, 2010, 1, 69-80.	1.9	26
28	Activation of p107 by Fibroblast Growth Factor, Which Is Essential for Chondrocyte Cell Cycle Exit, Is Mediated by the Protein Phosphatase 2A/B55α Holoenzyme. Molecular and Cellular Biology, 2013, 33, 3330-3342.	2.3	26
29	Activation of the Jak3 pathway is associated with granulocytic differentiation of myeloid precursor cells. Blood, 2002, 100, 2753-2762.	1.4	25
30	Invadopodia-mediated ECM degradation is enriched in the G1 phase of the cell cycle. Journal of Cell Science, 2019, 132, .	2.0	25
31	2,3-Bisphosphoglycerate-independent phosphoglycerate mutase is conserved among different phylogenic kingdoms. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 112, 287-293.	1.6	23
32	PP2A Counterbalances Phosphorylation of pRB and Mitotic Proteins by Multiple CDKs: Potential Implications for PP2A Disruption in Cancer. Genes and Cancer, 2012, 3, 739-748.	1.9	23
33	Cytokine induction of proliferation and expression of CDC2 and cyclin a in FDC-P1 myeloid hematopoietic progenitor cells: Regulation of ubiquitous and cell cycle-dependent histone gene transcription factors. Journal of Cellular Biochemistry, 1995, 59, 291-302.	2.6	22
34	Complex effects of flavopiridol on the expression of primary response genes. Cell Division, 2012, 7, 11.	2.4	21
35	CDK9 inhibition strategy defines distinct sets of target genes. BMC Research Notes, 2014, 7, 301.	1.4	21
36	PPP2R2A prostate cancer haploinsufficiency is associated with worse prognosis and a high vulnerability to B55α/PP2A reconstitution that triggers centrosome destabilization. Oncogenesis, 2019, 8, 72.	4.9	20

XAVIER GRANA

#	Article	IF	CITATIONS
37	The fate of pancreatic tumor cell lines following p16 overexpression depends on the modulation of CDK2 activity. Cell Death and Differentiation, 2004, 11, 1055-1065.	11.2	19
38	PP2A/B55Î \pm substrate recruitment as defined by the retinoblastoma-related protein p107. ELife, 2021, 10, .	6.0	19
39	Cyclin/cdk2 Complexes in the Nucleus of HeLa Cells. Biochemical and Biophysical Research Communications, 1994, 203, 1527-1534.	2.1	18
40	Cyclin E and SV40 Small t Antigen Cooperate to Bypass Quiescence and Contribute to Transformation by Activating CDK2 in Human Fibroblasts*. Journal of Biological Chemistry, 2008, 283, 11280-11292.	3.4	18
41	E1A modulates phosphorylation of p130 and p107 by differentially regulating the activity of G1/S cyclin/CDK complexes. Oncogene, 2001, 20, 4793-4806.	5.9	17
42	Isolation and sequencing of a cDNA encoding the B isozyme of rat phosphoglycerate mutase. Gene, 1992, 113, 281-282.	2.2	15
43	The Cell Cycle Inhibitor p21CIPIs Phosphorylated by Cyclin A-CDK2 Complexes. Biochemical and Biophysical Research Communications, 1997, 241, 434-438.	2.1	15
44	E1A Blocks Hyperphosphorylation of p130 and p107 without Affecting the Phosphorylation Status of the Retinoblastoma Protein. Journal of Virology, 2000, 74, 3166-3176.	3.4	14
45	Coordinated Activation of the Origin Licensing Factor CDC6 and CDK2 in Resting Human Fibroblasts Expressing SV40 Small T Antigen and Cyclin E. Journal of Biological Chemistry, 2009, 284, 14126-14135.	3.4	13
46	Downregulation of the Phosphatase Nuclear Targeting Subunit (PNUTS) triggers pRB dephosphorylation and apoptosis in pRB positive tumor cell lines. Cancer Biology and Therapy, 2008, 7, 842-844.	3.4	11
47	Nuclear location of phosphoglycerate mutase BB isozyme in rat tissues. Histochemistry, 1992, 97, 269-275.	1.9	10
48	p21 Loss Cooperates with INK4 Inactivation Facilitating Immortalization and Bcl-2–Mediated Anchorage-Independent Growth of Oncogene-Transduced Primary Mouse Fibroblasts. Cancer Research, 2007, 67, 4130-4137.	0.9	9
49	Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer and Prostatic Diseases, 2021, 24, 233-243.	3.9	8
50	Isolation and Characterization of Cofactor-Independent Phosphoglycerate Mutase Gene from Maize. Biochemical and Biophysical Research Communications, 1994, 203, 1204-1209.	2.1	7
51	Phosphoglycerate mutase activity and mRNA levels during germination of maize embryos. Plant Science, 1993, 89, 147-151.	3.6	6
52	Escape from Cellular Quiescence. , 2010, , 3-22.		5
53	Increase of 2,3-bisphosphoglycerate synthase/phosphatase during maturation of reticulocytes with high 2,3-bisphosphoglycerate content. Molecular and Cellular Biochemistry, 1991, 102, 183-8.	3.1	4
54	Monographs Editor. Genes and Cancer, 2012, 3, 611-611.	1.9	0

#	Article	IF	CITATIONS
55	Introduction: Current Themes on Cell Cycle and Cancer. Genes and Cancer, 2012, 3, 612-613.	1.9	0