## **Zhongming Ren**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10211782/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Microstructure evolution and mechanical behavior of Ni-rich Ni-Mn-Ga alloys under compressive and tensile stresses. Journal of Materials Science and Technology, 2022, 97, 113-122.                                                                                    | 5.6 | 13        |
| 2  | Revealing the Diversity of Dendritic Morphology Evolution During Solidification of Magnesium<br>Alloys using Synchrotron X-ray Imaging: A Review. Acta Metallurgica Sinica (English Letters), 2022, 35,<br>177-200.                                                    | 1.5 | 5         |
| 3  | Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy. Journal of Materials Science and Technology, 2022, 102, 66-71.                                                                                          | 5.6 | 95        |
| 4  | Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing: A Review. Acta<br>Metallurgica Sinica (English Letters), 2022, 35, 25-48.                                                                                                          | 1.5 | 6         |
| 5  | Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field. Journal of Materials Science and Technology, 2022, 110, 117-127.                                                                           | 5.6 | 9         |
| 6  | Electrodeposition-derived defect-rich heterogeneous trimetallic sulfide/hydroxide<br>nanotubes/nanobelts for efficient electrocatalytic oxygen production. Chemical Engineering Journal,<br>2022, 430, 133073.                                                         | 6.6 | 14        |
| 7  | Glass forming ability, magnetic properties and cryogenic magnetocaloric effects in RE60Co20Al20<br>(REÂ=ÂHo, Er, Tm) amorphous ribbons. Journal of Alloys and Compounds, 2022, 895, 162633.                                                                            | 2.8 | 5         |
| 8  | Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks,<br>and Mechanical Anisotropy. Acta Metallurgica Sinica (English Letters), 2022, 35, 501-516.                                                                        | 1.5 | 5         |
| 9  | Effects of laser scanning speed and building direction on the microstructure and mechanical properties of selective laser melted Inconel 718 superalloy. Materials Today Communications, 2022, 30, 103095.                                                             | 0.9 | 4         |
| 10 | Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic<br>Gd2MgTiO6 double perovskite oxide. Acta Materialia, 2022, 226, 117669.                                                                                            | 3.8 | 131       |
| 11 | 4D synchrotron X-ray tomographic study of the influence of transverse magnetic field on iron<br>intermetallic compounds precipitation behavior during solidification of Al–Si–Fe alloy.<br>Intermetallics, 2022, 143, 107471.                                          | 1.8 | 12        |
| 12 | Controlled moderative sulfidation-fabricated hierarchical heterogeneous nickel sulfides-based<br>electrocatalyst with tripartite Mo doping for efficient oxygen evolution. Journal of Energy<br>Chemistry, 2022, 68, 780-788.                                          | 7.1 | 10        |
| 13 | Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Science China Materials, 2022, 65, 1345-1352.                                                                                                                | 3.5 | 116       |
| 14 | Microstructure evolution and mechanical properties of laser additive manufactured Ti6Al4V alloy<br>under nitrogen-argon reactive atmosphere. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2022, 841, 143076. | 2.6 | 6         |
| 15 | Glide Mobility of a-Type Edge Dislocations in Aluminum Nitride by Molecular Dynamics Simulation. ACS Omega, 2022, 7, 2015-2022.                                                                                                                                        | 1.6 | 1         |
| 16 | Enhanced mechanical properties of Ti6Al4V alloy fabricated by laser additive manufacturing under static magnetic field. Materials Research Letters, 2022, 10, 530-538.                                                                                                 | 4.1 | 31        |
| 17 | Effect of a constant laser energy density on the evolution of microstructure and mechanical properties of NiTi shape memory alloy fabricated by laser powder bed fusion. Optics and Laser Technology, 2022, 152, 108182.                                               | 2.2 | 15        |
| 18 | Strength-ductility synergy of CoCrNi medium-entropy alloy processed with laser powder bed fusion.<br>Materials and Design, 2022, 219, 110774.                                                                                                                          | 3.3 | 18        |

| #  | Article                                                                                                                                                                                                                                                                    | IF                | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 19 | Evolution of microstructure and mechanical property of Ti-47Al-2Cr-2Nb intermetallic alloy by laser<br>direct energy deposition: From a single-track, thin-wall to bulk. Materials Characterization, 2022, 190,<br>112053.                                                 | 1.9               | 6           |
| 20 | Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition. Journal of Materials Science and Technology, 2021, 62, 148-161.                                                                          | 5.6               | 26          |
| 21 | Effect of Î <sup>3</sup> phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga<br>alloys under uniaxial compression. Journal of Materials Science and Technology, 2021, 66, 91-96.                                                    | 5.6               | 7           |
| 22 | Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the<br>directional solidification of Nickel-based single crystal superalloy. Journal of Materials Science and<br>Technology, 2021, 62, 52-59.                                      | 5.6               | 14          |
| 23 | Nucleation kinetics of paramagnetic and diamagnetic metal melts under a high magnetic field. Journal of Materials Science and Technology, 2021, 73, 165-170.                                                                                                               | 5.6               | 4           |
| 24 | Structure, magnetic properties and cryogenic magneto-caloric effect (MCE) in RE2FeAlO6 (RE = Gd, Dy,) Tj ETQq0                                                                                                                                                             | 0.0 rgBT /<br>2.3 | Qyerlock 10 |
| 25 | Effect of sintering aids on microstructure and properties of textured SiC ceramics prepared in 6 T.<br>Journal of Asian Ceramic Societies, 2021, 9, 85-95.                                                                                                                 | 1.0               | 1           |
| 26 | Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties. Journal of Materials Science and Technology, 2021, 72, 39-51.                                                                                            | 5.6               | 37          |
| 27 | Evolution Mechanism of Microporosity of Nickel-Based Single-Crystal Superalloy During Solution<br>Heat Treatment Under an Alternating Magnetic Field. Metallurgical and Materials Transactions B:<br>Process Metallurgy and Materials Processing Science, 2021, 52, 30-35. | 1.0               | 0           |
| 28 | Precipitation Behavior of Nitride Inclusions in K418 Alloy under the Continuous Unidirectional Solidification Process. ISIJ International, 2021, 61, 229-238.                                                                                                              | 0.6               | 4           |
| 29 | Microstructural Evolution and Solute Migration in the Mushy Zone of Peritectic Al-18 At. Pct Ni Alloy<br>in High Magnetic Fields. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2021, 52, 726-740.                             | 1.1               | 3           |
| 30 | Preparation, mechanical, and leaching properties of CaZrO <sub>3</sub> ceramic cores. International Journal of Applied Ceramic Technology, 2021, 18, 1490-1497.                                                                                                            | 1.1               | 8           |
| 31 | Application of Heat Absorption Method to Improve Quality of Large Steel Ingot. ISIJ International, 2021, 61, 865-870.                                                                                                                                                      | 0.6               | 6           |
| 32 | Numerical Simulation of In-mold Electromagnetic Stirring on Slide Gate Caused Bias Flow and Solidification in Slab Continuous Casting. ISIJ International, 2021, 61, 1860-1871.                                                                                            | 0.6               | 9           |
| 33 | Cryogenic magnetic properties and magnetocaloric effects (MCE) in B-site disordered RE2CuMnO6 (RE) Tj ETQq1                                                                                                                                                                | 1.0.7843          | lჭ₁gBT /Ov  |
| 34 | Influences of mullite fibers on mechanical and thermal properties of silicaâ€based ceramic cores.<br>International Journal of Applied Ceramic Technology, 2021, 18, 2284-2292.                                                                                             | 1.1               | 2           |
| 35 | First- and second-order phase transitions in RE6Co2Ga (RE = Ho, Dy or Gd) cryogenic magnetocaloric materials. Science China Materials, 2021, 64, 2846-2857.                                                                                                                | 3.5               | 62          |
| 36 | Al matrix composites fabricated by solid-state cold spray deposition: A critical review. Journal of<br>Materials Science and Technology, 2021, 86, 20-55.                                                                                                                  | 5.6               | 48          |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mechanism of improved intermediate temperature plasticity of nickel-base single crystal superalloy with hot isostatic pressing. Journal of Materials Research and Technology, 2021, 14, 1609-1617.                              | 2.6 | 10        |
| 38 | In-situ nitrogen strengthening of selective laser melted Ti6Al4V with superior mechanical performance. Additive Manufacturing, 2021, 46, 102142.                                                                                | 1.7 | 6         |
| 39 | Effect of annealing treatment on microstructure and mechanical properties of cold sprayed<br>TiB2/AlSi10Mg composites. Surfaces and Interfaces, 2021, 26, 101341.                                                               | 1.5 | 5         |
| 40 | Revealing the influence of high magnetic field on the solute distribution during directional solidification of Al-Cu alloy. Journal of Materials Science and Technology, 2021, 88, 226-232.                                     | 5.6 | 18        |
| 41 | Investigation of the properties and leaching characteristics of ceramic cores fabricated using BaZrO3 as the raw material. Materials Chemistry and Physics, 2021, 272, 124925.                                                  | 2.0 | 4         |
| 42 | Magnetic properties and promising cryogenic magneto-caloric performances of<br>Gd <sub>20</sub> Ho <sub>20</sub> Tm <sub>20</sub> Cu <sub>20</sub> Ni <sub>20</sub> amorphous<br>ribbons*. Chinese Physics B, 2021, 30, 017501. | 0.7 | 40        |
| 43 | Enhanced creep properties of nickel-base single crystal superalloy CMSX-4 by high magnetic field.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2021, 803, 140729.  | 2.6 | 10        |
| 44 | Effects of Static Magnetic Field on the Microstructure of Selective Laser Melted Inconel 625<br>Superalloy: Numerical and Experiment Investigations. Metals, 2021, 11, 1846.                                                    | 1.0 | 7         |
| 45 | The influence of a magnet field on sulfur removal from liquid iron by hydrogen plasma arc melting.<br>Modern Physics Letters B, 2021, 35, .                                                                                     | 1.0 | 1         |
| 46 | Effects of axial static magnetic field on columnar to equiaxed transition in directionally solidified low carbon steel. Ironmaking and Steelmaking, 2020, 47, 398-404.                                                          | 1.1 | 0         |
| 47 | Tuning the structural and magnetic properties of MnZn nano-ferrites synthesized under a high magnetic field. Journal of Magnetism and Magnetic Materials, 2020, 495, 165832.                                                    | 1.0 | 9         |
| 48 | Morphologies and magnetic properties of La-doped CeO2 nanoparticles by the solvothermal method in a low magnetic field. Materials Chemistry and Physics, 2020, 240, 122148.                                                     | 2.0 | 15        |
| 49 | Microstructure and bending strength improvement of alumina-based ceramic cores by liquid silicone resin infiltration. Materials Chemistry and Physics, 2020, 239, 122041.                                                       | 2.0 | 9         |
| 50 | In-situ observation of solid-liquid interface transition during directional solidification of Al-Zn<br>alloy via X-ray imaging. Journal of Materials Science and Technology, 2020, 39, 113-123.                                 | 5.6 | 17        |
| 51 | Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science and Engineering C, 2020, 106, 110289.                    | 3.8 | 158       |
| 52 | Magnetic properties and magneto-caloric performances in RECo2B2C (REÂ= Gd, Tb and Dy) compounds.<br>Journal of Alloys and Compounds, 2020, 817, 152780.                                                                         | 2.8 | 50        |
| 53 | Electrocatalytic Oxidation and Sensitive Determination of Paracetamol Based on Nanosheets<br>Selfâ€∎ssembled Lindgrenite Microflowers. Electroanalysis, 2020, 32, 978-985.                                                      | 1.5 | 12        |
| 54 | Microstructure and properties of SiO2-based ceramic cores with ball-shaped powders by the preceramic polymer technique in N2 atmosphere. Materials Chemistry and Physics, 2020, 243, 122609.                                    | 2.0 | 14        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Influence of yttrium oxide addition and sintering temperature on properties of aluminaâ€based ceramic cores. International Journal of Applied Ceramic Technology, 2020, 17, 685-694.                                                                       | 1.1 | 11        |
| 56 | Some new observations on interface reaction between nickel-based single crystal superalloy CMSX-4 and silicon oxide ceramic core. Corrosion Science, 2020, 177, 108969.                                                                                    | 3.0 | 9         |
| 57 | Study of the microstructure and mechanical performance of C-X stainless steel processed by selective<br>laser melting (SLM). Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2020, 781, 139227.     | 2.6 | 57        |
| 58 | Control of microstructure using magnetic fields and study of the mechanical behavior of Ni-rich<br>Ni-Mn-Ga alloys. Acta Materialia, 2020, 199, 383-396.                                                                                                   | 3.8 | 20        |
| 59 | Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 139981.          | 2.6 | 87        |
| 60 | Influence of static magnetic field on the heterogeneous nucleation behavior of Al on single crystal Al2O3 substrate. Materialia, 2020, 13, 100847.                                                                                                         | 1.3 | 6         |
| 61 | Effect of Static Magnetic Field on the Evolution of Residual Stress and Microstructure of Laser<br>Remelted Inconel 718 Superalloy. Journal of Thermal Spray Technology, 2020, 29, 1410-1423.                                                              | 1.6 | 9         |
| 62 | Enhanced Degradation in Grain Refinement of Inoculated 2024 Al Alloy in Steady Magnetic field.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51,<br>4584-4591.                                           | 1.1 | 4         |
| 63 | Magnetic field-assisted solvothermal synthesis and the magnetic properties of Fe-doped CeO2 nanoparticles. Journal of Asian Ceramic Societies, 2020, 8, 615-623.                                                                                           | 1.0 | 5         |
| 64 | The effect of static magnetic field on solid–liquid interfacial free energy of Al–Cu alloy system.<br>Scripta Materialia, 2020, 187, 232-236.                                                                                                              | 2.6 | 20        |
| 65 | Structural, magnetic and magnetocaloric properties in RE2Ni1.5Ga2.5 (REÂ= Dy, Ho, Er and Tm)<br>compounds. Journal of Alloys and Compounds, 2020, 830, 154666.                                                                                             | 2.8 | 16        |
| 66 | Wetting Transition in a Molten Metal and Solid Substrate System in High Magnetic Fields.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51,<br>2333-2343.                                                 | 1.1 | 7         |
| 67 | Magnetic-Field-Induced Liquid–Solid Interface Transformation and Its Effect on Microsegregation in<br>Directionally Solidified Ni-Cr Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy<br>and Materials Science, 2020, 51, 4592-4601. | 1.1 | 3         |
| 68 | Structural, magnetic properties and magneto-caloric performances in the antiferromagnetic RECoSi2<br>(REÂ= Er and Tm) compounds. Journal of Alloys and Compounds, 2020, 843, 156016.                                                                       | 2.8 | 4         |
| 69 | Tribological properties of Al/diamond composites produced by cold spray additive manufacturing.<br>Additive Manufacturing, 2020, 36, 101434.                                                                                                               | 1.7 | 12        |
| 70 | Magnetic properties, magnetocaloric effect and refrigeration performance in <i>RE</i> 60Al20Ni20<br>( <i>RE</i> = Tm, Er and Ho) amorphous ribbons. Journal of Applied Physics, 2020, 127, .                                                               | 1.1 | 12        |
| 71 | Suppression of γ phase and its effect on mechanical behavior of melt-spun and annealed Ni–Mn–Ga<br>high-temperature shape memory alloys. Materials Today Communications, 2020, 24, 101165.                                                                 | 0.9 | 0         |
| 72 | Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase<br>HoNi/HoNi <sub>2</sub> composite*. Chinese Physics B, 2020, 29, 107502.                                                                                             | 0.7 | 7         |

| #  | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Numerical Simulation for the Influence of EMS Position on Fluid Flow and Inclusion Removal in a Slab<br>Continuous Casting Mold. ISIJ International, 2020, 60, 1204-1212.                                                                                                                       | 0.6 | 18        |
| 74 | Effects of ZrB <sub>2</sub> addition on texture development and properties of porous<br>Si <sub>3</sub> N <sub>4</sub> -ZrB <sub>2</sub> composites by magnetic field alignment. Journal of<br>Asian Ceramic Societies, 2019, 7, 368-376.                                                       | 1.0 | 0         |
| 75 | Investigation on microstructure and creep properties of nickel based single crystal superalloys<br>PWA1483 during heat treatment under an alternating magnetic field. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138087. | 2.6 | 14        |
| 76 | Enhanced high temperature elongation of nickel based single crystal superalloys by hot isostatic pressing. Journal of Alloys and Compounds, 2019, 805, 78-83.                                                                                                                                   | 2.8 | 18        |
| 77 | Strong magnetic field-dual-assisted fabrication of heterogeneous sulfide-based hollow nanochain<br>electrodes for high-rate supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19733-19744.                                                                                            | 5.2 | 24        |
| 78 | Effect of steady magnetic field on undercooling of Al-Cu alloy melts. Europhysics Letters, 2019, 126, 46001.                                                                                                                                                                                    | 0.7 | 4         |
| 79 | Microstructure and Mechanical Properties of Ni-based Superalloy K418 Produced by the Continuous<br>Unidirectional Solidification Process. Journal of Materials Engineering and Performance, 2019, 28,<br>6483-6491.                                                                             | 1.2 | 10        |
| 80 | Steel/Slag Interface Behavior under Multifunction Electromagnetic Driving in a Continuous Casting<br>Slab Mold. Metals, 2019, 9, 983.                                                                                                                                                           | 1.0 | 12        |
| 81 | Evolutions of the Micro- and Macrostructure and Tensile Property of Cu-15Ni-8Sn Alloy During<br>Electromagnetic Stirring-Assisted Horizontal Continuous Casting. Metallurgical and Materials<br>Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2111-2120.       | 1.0 | 11        |
| 82 | Polymorphic microstructure of a MnCu damping alloy solidified under magnetic field. Materials<br>Research Express, 2019, 6, 0865h2.                                                                                                                                                             | 0.8 | 8         |
| 83 | A novel non-enzymatic glucose electrochemical sensor based on CNF@Ni-Co layered double hydroxide modified glassy carbon electrode. Microchemical Journal, 2019, 150, 104106.                                                                                                                    | 2.3 | 36        |
| 84 | Thermal and numerical simulation of mould electromagnetic stirring of GCr15 bearing steel.<br>Materials Science and Technology, 2019, 35, 2173-2180.                                                                                                                                            | 0.8 | 7         |
| 85 | Effect of Thermoelectric Magnetic Convection on Shrinkage Porosity at the Final Stage of<br>Solidification of GCr18Mo Steel Under Axial Static Magnetic Field. Metallurgical and Materials<br>Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 881-889.           | 1.0 | 3         |
| 86 | Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting<br>microstructural lamellae. Nature Communications, 2019, 10, 489.                                                                                                                          | 5.8 | 505       |
| 87 | Effect of TiB 2 addition on grain orientation of porous Si 3 N 4 â€TiB 2 composites by magnetic field<br>alignment technology. International Journal of Applied Ceramic Technology, 2019, 16, 1381-1389.                                                                                        | 1.1 | 0         |
| 88 | Solute trapping in Al-Cu alloys caused by a 29 Tesla super high static magnetic field. Scientific Reports, 2019, 9, 266.                                                                                                                                                                        | 1.6 | 11        |
| 89 | Cold sprayed WC reinforced maraging steel 300 composites: Microstructure characterization and mechanical properties. Journal of Alloys and Compounds, 2019, 785, 499-511.                                                                                                                       | 2.8 | 23        |
| 90 | Microstructure and mechanical characterization of Si <sub>3</sub> N <sub>4</sub> /nickel-based superalloy joints with Ti/Au/Ni interlayers. Journal of Adhesion Science and Technology, 2019, 33, 1858-1869.                                                                                    | 1.4 | 4         |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Improvement of tribological performance by micro-arc oxidation treatment on selective laser melting<br>Ti6Al4V alloy. Materials Research Express, 2019, 6, 096509.                                                                                           | 0.8 | 17        |
| 92  | Evolution of microsegregation in directionally solidified Al–Cu alloys under steady magnetic field.<br>Journal of Alloys and Compounds, 2019, 800, 41-49.                                                                                                    | 2.8 | 16        |
| 93  | Influence of annealing treatment on microstructure and magnetic properties of cold sprayed<br>Ni-coated FeSiAl soft magnetic composite coating. Surface and Coatings Technology, 2019, 374, 476-484.                                                         | 2.2 | 20        |
| 94  | Dual-effects of 6†T strong magnetic field on interdiffusion behavior of Fe-FeSi diffusion couple.<br>Materials Characterization, 2019, 151, 280-285.                                                                                                         | 1.9 | 3         |
| 95  | Effects of substrate heat accumulation on the cold sprayed Ni coating quality: Microstructure evolution and tribological performance. Surface and Coatings Technology, 2019, 371, 185-193.                                                                   | 2.2 | 7         |
| 96  | A special single variant zone in directionally solidified Ni-Mn-Ga alloy. Scripta Materialia, 2019, 167,<br>105-109.                                                                                                                                         | 2.6 | 1         |
| 97  | Strengthened Peening Effect on Metallurgical Bonding Formation in Cold Spray Additive<br>Manufacturing. Journal of Thermal Spray Technology, 2019, 28, 769-779.                                                                                              | 1.6 | 32        |
| 98  | Effect of Co substitution and magnetic field on the morphologies and magnetic properties of CeO2 nanoparticles. Ceramics International, 2019, 45, 11927-11933.                                                                                               | 2.3 | 7         |
| 99  | Effect of a transverse weak magnetic field on the texture evolution and magnetic property of Fe-1.0 wt.% Si alloy during bulk solidification. Materials Research Express, 2019, 6, 066105.                                                                   | 0.8 | 2         |
| 100 | Three dimensional dendritic morphology and orientation transition induced by high static magnetic<br>field in directionally solidified Al-10 wt.%Zn alloy. Journal of Materials Science and Technology, 2019,<br>35, 1587-1592.                              | 5.6 | 18        |
| 101 | Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing. Additive Manufacturing, 2019, 27, 595-605.                                                              | 1.7 | 82        |
| 102 | Microstructural and mechanical properties of high-performance Inconel 718 alloy by cold spraying.<br>Journal of Alloys and Compounds, 2019, 792, 456-467.                                                                                                    | 2.8 | 75        |
| 103 | Revealing influence mechanism of a transverse static magnetic field on the refinement of primary dendrite spacing during directional solidification. Journal of Crystal Growth, 2019, 517, 54-58.                                                            | 0.7 | 8         |
| 104 | Effect of Heat Treatment Combined with an Alternating Magnetic Field on Microstructure and<br>Mechanical Properties of a Ni-Based Superalloy. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2019, 50, 1837-1850. | 1.1 | 6         |
| 105 | Effect of an axial high static magnetic field on the crystal orientation and magnetic property of<br>Fe-4.5†wt% Si alloy during bulk solidification. Materials Letters, 2019, 247, 189-192.                                                                  | 1.3 | 7         |
| 106 | Influence of a static magnetic field on the distribution of solute Cu and interdendritic constitutional undercooling in directionally solidified Al-4.5wt.%Cu alloy. Materials Letters, 2019, 248, 73-77.                                                    | 1.3 | 6         |
| 107 | Giant refrigerant capacity in equi-atomic HoErGdCuNi amorphous ribbons. Journal of Alloys and Compounds, 2019, 792, 180-184.                                                                                                                                 | 2.8 | 8         |
| 108 | Preparation of Al2O3 Ceramic Cores by Dry-Pressing Assisted of Precursor-Derived Ceramic Technology. Springer Proceedings in Physics, 2019, , 1-8.                                                                                                           | 0.1 | 0         |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Explicit Dynamics Simulation of High-Speed Railway Bearing Based On ANSYS/LS-DYNA. IOP Conference<br>Series: Materials Science and Engineering, 2019, 612, 032011.                                                                                                  | 0.3 | 1         |
| 110 | Effect of annealing treatment on the microstructure and mechanical properties of Fe-18Mn-0.8C-0.2 V<br>TWIP steel. Materials Research Express, 2019, 6, 1265h4.                                                                                                     | 0.8 | 2         |
| 111 | Influence of EMS on Asymmetric Flow with Different SEN Clogging Rates in a Slab Continuous Casting<br>Mold. Metals, 2019, 9, 1288.                                                                                                                                  | 1.0 | 7         |
| 112 | Enhanced Dendrite Coarsening and Microsegregation in Al–Cu Alloy under a Steady Magnetic Field.<br>Materials Transactions, 2019, 60, 1921-1927.                                                                                                                     | 0.4 | 6         |
| 113 | Physical Modeling of Asymmetrical Flow in Slab Continuous Casting Mold due to Submerged Entry<br>Nozzle Clogging with the Effect of Electromagnetic Stirring. ISIJ International, 2019, 59, 2264-2271.                                                              | 0.6 | 20        |
| 114 | Magnetic field–dependent microstructure evolution and magnetic property of Fe–6.5 Si–0.05 B alloy<br>during solidification. Journal of Materials Research, 2019, 34, 4076-4084.                                                                                     | 1.2 | 3         |
| 115 | Columnar to Equiaxed Transition during Directionally Solidifying GCr18Mo Steel Affected by<br>Thermoelectric Magnetic Force under an Axial Static Magnetic Field. ISIJ International, 2019, 59, 60-68.                                                              | 0.6 | 8         |
| 116 | Mechanical and inÂvitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser<br>melting. Journal of Alloys and Compounds, 2019, 782, 209-223.                                                                                           | 2.8 | 112       |
| 117 | Formation Mechanism of Stray Grain of Nickel-Based Single-Crystal Superalloy Under a High Magnetic<br>Field During Directional Solidification. Metallurgical and Materials Transactions B: Process<br>Metallurgy and Materials Processing Science, 2019, 50, 27-31. | 1.0 | 2         |
| 118 | Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance. Surface and Coatings Technology, 2019, 371, 355-365.                                                                                     | 2.2 | 44        |
| 119 | Microstructure evolution and mechanical properties of maraging steel 300 fabricated by cold<br>spraying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2019, 743, 482-493.                                 | 2.6 | 29        |
| 120 | Manganese Removal from Liquid Nickel by Hydrogen Plasma Arc Melting. Materials, 2019, 12, 33.                                                                                                                                                                       | 1.3 | 7         |
| 121 | Comparative investigation of microstructure and properties of Ni-coated FeSiAl soft magnetic composite coatings produced by cold spraying and HVOF. Surface and Coatings Technology, 2019, 371, 224-234.                                                            | 2.2 | 15        |
| 122 | Formation of novel microstructures in quenched Al Cu alloys in steady magnetic field. Journal of Alloys and Compounds, 2019, 776, 353-356.                                                                                                                          | 2.8 | 3         |
| 123 | Effect of silicone resin as precursor and binder on the properties of alumina-based ceramic cores using ball-shaped powders. Ceramics International, 2019, 45, 2170-2177.                                                                                           | 2.3 | 12        |
| 124 | Preparation of silica ceramic cores by the preceramic pyrolysis technology using silicone resin as precursor and binder. Materials Chemistry and Physics, 2019, 223, 676-682.                                                                                       | 2.0 | 11        |
| 125 | Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification. Journal of Materials Science and Technology, 2019, 35, 568-577.                                                     | 5.6 | 17        |
| 126 | Motion of Solid Grains During Magnetic Field-Assisted Directional Solidification. Metallurgical and<br>Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 861-865.                                                            | 1.0 | 9         |

| #   | Article                                                                                                                                                                                                                        | IF                | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 127 | Correlation between microstructures and mechanical properties in Ni-rich Ni–Mn–Ga<br>high-temperature shape-memory alloys. Materials Science and Technology, 2018, 34, 712-717.                                                | 0.8               | 5         |
| 128 | Metallization of polyether ether ketone (PEEK) by copper coating via cold spray. Surface and Coatings<br>Technology, 2018, 342, 209-219.                                                                                       | 2.2               | 59        |
| 129 | Effect of the simultaneous application of a high static magnetic field and a low alternating current on grain structure and grain boundary of pure aluminum. Journal of Materials Science and Technology, 2018, 34, 2431-2438. | 5.6               | 18        |
| 130 | A novel approach for fabricating Ni-coated FeSiAl soft magnetic composite via cold spraying. Journal of Alloys and Compounds, 2018, 749, 523-533.                                                                              | 2.8               | 23        |
| 131 | Detwinning process of martensite in Ni 58 Mn 25 Ga 17 as a high temperature shape memory alloy under<br>uniaxial compression. International Journal of Plasticity, 2018, 103, 203-213.                                         | 4.1               | 18        |
| 132 | Improvement in creep life of a nickel-based single-crystal superalloy via composition homogeneity on the multiscales by magnetic-field-assisted directional solidification. Scientific Reports, 2018, 8, 1452.                 | 1.6               | 13        |
| 133 | Preparation of c-axis textured TiB2 ceramics by a strong magnetic field of 6â€⊤ assisted slip-casting process. Materials Letters, 2018, 217, 96-99.                                                                            | 1.3               | 11        |
| 134 | Fabrication of porous Al2O3-based ceramics using ball-shaped powders by preceramic polymer process in N2 atmosphere. Ceramics International, 2018, 44, 5915-5920.                                                              | 2.3               | 8         |
| 135 | Metamagnetic transition and magnetocaloric properties in antiferromagnetic Ho 2 Ni 2 Ga and Tm 2 Ni<br>2 Ga compounds. Intermetallics, 2018, 94, 17-21.                                                                        | 1.8               | 46        |
| 136 | Structure and cryogenic magnetic properties in Ho2BaCuO5 cuprate. Ceramics International, 2018, 44, 1991-1994.                                                                                                                 | 2.3               | 58        |
| 137 | Preferred Orientation of Porous Si <sub>3</sub> N <sub>4</sub> Ceramics by Gelâ€Casting in a Longitudinal Rotating Magnetic Field. Crystal Research and Technology, 2018, 53, 1700147.                                         | 0.6               | 3         |
| 138 | Structure, glass-forming ability, magnetic and cryogenic magneto-caloric properties in the<br>amorphous Ni30Co10RE60 (RE = Ho and Tm) ribbons. Journal of Materials Science, 2018, 53, 9816-9822                               | 2. <sup>1.7</sup> | 27        |
| 139 | Effect of high static magnetic field on the microstructure and mechanical properties of directionally solidified alloy 2024. Journal of Alloys and Compounds, 2018, 749, 978-989.                                              | 2.8               | 17        |
| 140 | Orientation of Magnetized MnBi in a Strong Static Magnetic Field. Metallurgical and Materials<br>Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1981-1985.                                               | 1.1               | 7         |
| 141 | Formation of highly porous NiCo2S4 discs with enhanced pseudocapacitive properties through sequential ion-exchange. Materials and Design, 2018, 145, 135-143.                                                                  | 3.3               | 31        |
| 142 | The mechanism of inclusion removal from molten steel by dissolved gas flotation. Ironmaking and Steelmaking, 2018, 45, 648-654.                                                                                                | 1.1               | 14        |
| 143 | Preparation of porous Al2O3 ceramics with in situ formed C-nanowires derived form silicone resin.<br>Materials Letters, 2018, 212, 271-274.                                                                                    | 1.3               | 7         |
| 144 | On the role of oxide film's cleaning effect into the metallurgical bonding during cold spray.<br>Materials Letters, 2018, 210, 199-202.                                                                                        | 1.3               | 53        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Low field induced large magnetic entropy change in the amorphousized Tm60Co20Ni20 ribbon. Journal of Alloys and Compounds, 2018, 733, 40-44.                                                                                                                | 2.8 | 57        |
| 146 | Effect of a high magnetic field on solidification structure in directionally solidified NiAl-Cr(Mo)-Hf eutectic alloy. Journal of Alloys and Compounds, 2018, 737, 74-82.                                                                                   | 2.8 | 7         |
| 147 | Two Paradigms on Study Slab Continuous Casting Process with Mold Electromagnetic Stirring. IOP Conference Series: Materials Science and Engineering, 2018, 424, 012035.                                                                                     | 0.3 | Ο         |
| 148 | Fabrication of Co-based composites with in-situ formed ceramic grains by preceramic polymer technology assisted of SPS. Composites Communications, 2018, 10, 217-220.                                                                                       | 3.3 | 0         |
| 149 | Reduced Wettability of Solids by a Liquid Ga–In–Sn Alloy in a Steady Magnetic Field. Journal of<br>Physical Chemistry C, 2018, 122, 27451-27455.                                                                                                            | 1.5 | 13        |
| 150 | Mechanism of Desulfurization from Liquid Iron by Hydrogen Plasma Arc Melting. Metallurgical and<br>Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2951-2955.                                                      | 1.0 | 10        |
| 151 | High Magnetic Field Processing of Metal Alloys. Springer Series in Materials Science, 2018, , 195-242.                                                                                                                                                      | 0.4 | 0         |
| 152 | Martensitic transformation, twin boundary and phase interface mobility of directionally solidified<br>Ni-Mn-Ga alloys during compression by EBSD tracing. IOP Conference Series: Materials Science and<br>Engineering, 2018, 375, 012023.                   | 0.3 | 0         |
| 153 | Double-shelled hollow hetero-MnCo2S4/CoS1.097 spheres with carbon coating for advanced supercapacitors. Journal of Power Sources, 2018, 408, 65-73.                                                                                                         | 4.0 | 54        |
| 154 | Cold spraying of thermally softened Ni-coated FeSiAl composite powder: Microstructure<br>characterization, tribological performance and magnetic property. Materials and Design, 2018, 160,<br>270-283.                                                     | 3.3 | 24        |
| 155 | Effects of Y addition on the microstructure and properties of Cu-Cr-Zr alloy during the directional solidification process. Materials Research Express, 2018, 5, 116505.                                                                                    | 0.8 | 2         |
| 156 | In-situ fabrication of graded material with the application of a horizontal magnetic field during directional solidification. Materials Characterization, 2018, 141, 423-432.                                                                               | 1.9 | 10        |
| 157 | Microsegregation Formation in Al–Cu Alloy under Action of Steady Magnetic Field. ISIJ International, 2018, 58, 899-904.                                                                                                                                     | 0.6 | 7         |
| 158 | Droplet Evolution and Refinement During Liquid–Liquid Decomposition of Zn-6ÂWtÂPct Bi Immiscible<br>Alloy Under High Static Magnetic Fields. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2018, 49, 3333-3345. | 1.1 | 10        |
| 159 | Effect of a High Magnetic Field on γ′ Phase for Ni-Based Single Crystal Superalloy During Directional<br>Solidification. Metallurgical and Materials Transactions B: Process Metallurgy and Materials<br>Processing Science, 2018, 49, 1919-1924.           | 1.0 | 3         |
| 160 | Cryogenic magnetic properties in the pyrochlore RE2TiMnO7 (RE = Dy and Ho) compounds. Ceramics International, 2018, 44, 15681-15685.                                                                                                                        | 2.3 | 10        |
| 161 | Preparation of textured TiB2-(Ti,Zr)B2 composites by gel-casting in a magnetic field of 6â€ <sup>–</sup> T. Materials<br>Letters, 2018, 228, 431-434                                                                                                        | 1.3 | 3         |
| 162 | Modification of the Primary and Peritectic Phases in Directionally Solidified Cu-20 wt.% Sn Alloy by Magnetic Field. ISIJ International, 2018, 58, 505-514.                                                                                                 | 0.6 | 4         |

| #   | Article                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Deep deoxidization from liquid iron by hydrogen plasma arc melting. International Journal of<br>Hydrogen Energy, 2018, 43, 12153-12157.                                                                                                                                                     | 3.8 | 6         |
| 164 | Enhanced undercooling of para- and diamagnetic metal melts in steady magnetic field. Japanese Journal of Applied Physics, 2018, 57, 080301.                                                                                                                                                 | 0.8 | 8         |
| 165 | Correlation of microsegregation and variant distribution in directionally solidified Ni-Mn-Ga alloys.<br>Scripta Materialia, 2018, 156, 95-100.                                                                                                                                             | 2.6 | 9         |
| 166 | Compression properties enhancement of Al-Cu alloy solidified under a 29â€⊤ high static magnetic field.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2018, 733, 170-178.                                                        | 2.6 | 13        |
| 167 | Coupled 3D Numerical Model of Droplet Evolution Behaviors during the Magnetically Controlled Electroslag Remelting Process. Jom, 2018, 70, 2917-2926.                                                                                                                                       | 0.9 | 11        |
| 168 | Influence of a transverse static magnetic field on the orientation and peritectic reaction of Cu-10.5 at.% Sn peritectic alloy. Scientific Reports, 2018, 8, 10641.                                                                                                                         | 1.6 | 6         |
| 169 | Evolution of microstructure and microsegregation in Ni-Mn-Ga alloys directionally solidified under axial magnetic field. Journal of Alloys and Compounds, 2018, 758, 54-61.                                                                                                                 | 2.8 | 13        |
| 170 | Cell-to-Dendrite Transition Induced by a Static Transverse Magnetic Field During Lasering Remelting of<br>the Nickel-Based Superalloy. Metallurgical and Materials Transactions B: Process Metallurgy and<br>Materials Processing Science, 2018, 49, 3211-3219.                             | 1.0 | 3         |
| 171 | Cryogenic magnetic properties and magnetocaloric performance in double perovskite Pr2NiMnO6 and Pr2CoMnO6 compounds. Ceramics International, 2018, 44, 20762-20767.                                                                                                                         | 2.3 | 21        |
| 172 | The Effect of Static Magnetic Field on the Channel Formation during Directional Solidification of Aqueous Ammonium Chloride Solution. Crystal Research and Technology, 2018, 53, 1800113.                                                                                                   | 0.6 | 1         |
| 173 | An Electromagnetic Compounding Technique for Counteracting the Thermoelectric Magnetic Effect<br>During Directional Solidification Under a Transverse Static Magnetic Field. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3373-3382. | 1.1 | 10        |
| 174 | Synchrotron tomographic quantification of the influence of Zn concentration on dendritic growth in Mg-Zn alloys. Acta Materialia, 2018, 156, 287-296.                                                                                                                                       | 3.8 | 46        |
| 175 | 6.5 wt% Si high silicon steel sheets prepared by composite electrodeposition in magnetic field. Journal of Materials Science and Technology, 2018, 34, 2492-2497.                                                                                                                           | 5.6 | 14        |
| 176 | Effect of a high magnetic field on the microstructure in directionally solidified two-phase Ni3Al alloys. Materials Letters, 2017, 189, 131-135.                                                                                                                                            | 1.3 | 6         |
| 177 | Magnetism and magnetocaloric effect in the RE2CuSi3 (REÂ= Dy andÂHo) compounds. Journal of Alloys<br>and Compounds, 2017, 702, 546-550.                                                                                                                                                     | 2.8 | 24        |
| 178 | Refinement of primary Si in the bulk solidified Al-20Âwt.%Si alloy assisting by high static magnetic field<br>and phosphorus addition. Journal of Alloys and Compounds, 2017, 714, 39-46.                                                                                                   | 2.8 | 32        |
| 179 | Formation mechanism of axial macrosegregation of primary phases induced by a static magnetic field during directional solidification. Scientific Reports, 2017, 7, 45834.                                                                                                                   | 1.6 | 9         |
| 180 | Effect of Current Frequency on Droplet Evolution During Magnetic-Field-Controlled Electroslag<br>Remelting Process Via Visualization Method. Metallurgical and Materials Transactions B: Process<br>Metallurgy and Materials Processing Science, 2017, 48, 655-663.                         | 1.0 | 23        |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Effects of a High Magnetic Field on the Microstructure of Ni-Based Single-Crystal Superalloys During<br>Directional Solidification. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2017, 48, 3804-3813.                                     | 1.1 | 10        |
| 182 | Magnetic properties and magnetocaloric effect in the aluminide RE NiAl 2 ( RE Â=ÂHo and Er) compounds.<br>Intermetallics, 2017, 88, 61-64.                                                                                                                                             | 1.8 | 21        |
| 183 | Chemical segregation and coarsening of γ′ precipitates in Ni-based superalloy during heat treatment in alternating magnetic field. Journal of Alloys and Compounds, 2017, 720, 272-276.                                                                                                | 2.8 | 21        |
| 184 | Effect of a magnetic field on macro segregation of the primary silicon phase in hypereutectic Al-Si alloy during directional solidification. Journal of Alloys and Compounds, 2017, 722, 108-115.                                                                                      | 2.8 | 31        |
| 185 | Enhanced diffusivity in Ni-Al system by alternating magnetic field. Applied Physics Letters, 2017, 110, .                                                                                                                                                                              | 1.5 | 13        |
| 186 | Detwinning of hierarchically structured martensitic variants in a directionally solidified<br>non-modulated Ni-Mn-Ga alloy under uniaxial loading. Scripta Materialia, 2017, 134, 85-90.                                                                                               | 2.6 | 16        |
| 187 | Microstructure and mechanical properties of a Ni-based superalloy after heat treatment in a steady magnetic field. Journal of Materials Processing Technology, 2017, 246, 176-184.                                                                                                     | 3.1 | 11        |
| 188 | Determination of structural and magnetic properties in directionally solidified Ni-Mn-Ga rod with an axial compositional variation. Materials and Design, 2017, 134, 469-475.                                                                                                          | 3.3 | 9         |
| 189 | Effect of a transverse magnetic field on primary-Si distribution during directional solidification in hypereutectic Al-Si alloy. Europhysics Letters, 2017, 118, 59001.                                                                                                                | 0.7 | 1         |
| 190 | Measurement of contact angles at room temperature in high magnetic field. Review of Scientific<br>Instruments, 2017, 88, 115110.                                                                                                                                                       | 0.6 | 9         |
| 191 | Martensitic transformation and detwinning in directionally solidified two-phase Ni-Mn-Ga alloys under uniaxial compression. Journal of Alloys and Compounds, 2017, 722, 721-728.                                                                                                       | 2.8 | 10        |
| 192 | Columnar-to-Equiaxed Transition and Equiaxed Grain Alignment in Directionally Solidified Ni3Al Alloy<br>Under an Axial Magnetic Field. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2017, 48, 4193-4203.                                  | 1.1 | 18        |
| 193 | Effect of Primary Dendrite Orientation on Stray Grain Formation in Cross-Section Change Region<br>During the Directional Solidification of Ni-Based Superalloy. Metallurgical and Materials<br>Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 394-405. | 1.0 | 12        |
| 194 | A novel spiral trajectory for damage component recovery with cold spray. Surface and Coatings<br>Technology, 2017, 309, 719-728.                                                                                                                                                       | 2.2 | 44        |
| 195 | On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field. Materials Science and Engineering C, 2017, 70, 405-407.                                                                                   | 3.8 | 53        |
| 196 | Magnetic and magnetocaloric properties of the ternary cadmium based intermetallic compounds of Gd2Cu2Cd and Er2Cu2Cd. Journal of Alloys and Compounds, 2017, 692, 665-669.                                                                                                             | 2.8 | 63        |
| 197 | Alternating-magnetic-field induced enhancement of diffusivity in Ni-Cr alloys. Scientific Reports, 2017, 7, 18085.                                                                                                                                                                     | 1.6 | 15        |
| 198 | Influence of an Axial Magnetic Field on Microstructures and Alignment in Directionally Solidified<br>Ni-based Superalloy. ISIJ International, 2017, 57, 337-342.                                                                                                                       | 0.6 | 14        |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Experimental and Numerical Investigations of the Multi-scale Thermoelectromagnetic Convection on the Microstructure during Directionally Solidified Sn-5wt%Pb Alloys. ISIJ International, 2017, 57, 833-840.                                                          | 0.6 | 9         |
| 200 | Influences of the Transverse Static Magnetic Field on the Droplet Evolution Behaviors during the<br>Low Frequency Electroslag Remelting Process. ISIJ International, 2017, 57, 2157-2164.                                                                             | 0.6 | 16        |
| 201 | Visualization Study on the Droplet Evolution Behaviors in Electroslag Remelting Process by Superimposing a Transverse Static Magnetic Field. ISIJ International, 2016, 56, 255-263.                                                                                   | 0.6 | 21        |
| 202 | Control of dendrite growth by a magnetic field during directional solidification. Europhysics<br>Letters, 2016, 114, 18001.                                                                                                                                           | 0.7 | 1         |
| 203 | EBSD study of the morphology and orientation of the primary and eutectic phases in Al–Cu alloys<br>during solidification under a strong magnetic field. Journal of Applied Crystallography, 2016, 49,<br>139-148.                                                     | 1.9 | 8         |
| 204 | Effect of β-Si <sub>3</sub> N <sub>4</sub> Initial Powder Size on Texture Development of Porous Si3N4<br>Ceramics Prepared by Gel-Casting in a Magnetic Field. Transactions of the Indian Ceramic Society, 2016,<br>75, 256-262.                                      | 0.4 | 5         |
| 205 | Excellent magnetocaloric properties in RE2Cu2Cd (RE = Dy and Tm) compounds and its composite<br>materials. Scientific Reports, 2016, 6, 34192.                                                                                                                        | 1.6 | 65        |
| 206 | Effect of a High Static Magnetic Field on the Origin of Stray Grains during Directional Solidification.<br>Materials Transactions, 2016, 57, 1230-1235.                                                                                                               | 0.4 | 7         |
| 207 | Effect of a Transverse Magnetic Field on Stray Grain Formation of Ni-Based Single Crystal Superalloy<br>During Directional Solidification. Metallurgical and Materials Transactions B: Process Metallurgy<br>and Materials Processing Science, 2016, 47, 3231-3236.   | 1.0 | 6         |
| 208 | Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys. Scientific Reports, 2016, 6, 37872.                                                                                                                   | 1.6 | 8         |
| 209 | Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy. Scientific Reports, 2016, 6, 24585.                                                                                         | 1.6 | 30        |
| 210 | Fabrication and Characterization of Porous Alumina-Based Ceramics Using Silicone Resin as Binder.<br>Transactions of the Indian Ceramic Society, 2016, 75, 40-46.                                                                                                     | 0.4 | 10        |
| 211 | Interfacial microstructure of partial transient liquid phase bonding of Si 3 N 4 to nickel-base<br>superalloy using Ti/Au/Ni interlayers. Vacuum, 2016, 130, 105-108.                                                                                                 | 1.6 | 18        |
| 212 | Controlling droplet distribution using thermoelectric magnetic forces during bulk solidification processing of a Zn–6 wt.%Bi immiscible alloy. Materials and Design, 2016, 100, 168-174.                                                                              | 3.3 | 20        |
| 213 | Effect of a high magnetic field on the growth of ternary Al-Cu-Ag alloys during directional solidification. Acta Materialia, 2016, 121, 240-256.                                                                                                                      | 3.8 | 49        |
| 214 | EBSD Study of the Influence of a High Magnetic Field on the Microstructure and Orientation of the<br>Al-Si Eutectic During Directional Solidification. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2016, 47, 2952-2963. | 1.1 | 11        |
| 215 | Effect of silicone resin on the properties of silica ceramic cores by heating treatment. Journal of Adhesion Science and Technology, 2016, 30, 2667-2677.                                                                                                             | 1.4 | 9         |
| 216 | Effect of a High Magnetic Field on Microstructures of Ni-Based Single Crystal Superalloy During Seed<br>Melt-Back. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing<br>Science, 2016, 47, 828-833.                             | 1.0 | 18        |

| #   | Article                                                                                                                                                                                                                                                                                                | IF           | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 217 | Effect of interdendritic thermoelectric magnetic convection on evolution of tertiary dendrite during directional solidification. Journal of Crystal Growth, 2016, 439, 66-73.                                                                                                                          | 0.7          | 12        |
| 218 | Interfacial microstructure and mechanical characterization of silicon nitride/nickel-base superalloy joints by partial transient liquid phase bonding. Ceramics International, 2016, 42, 1633-1639.                                                                                                    | 2.3          | 24        |
| 219 | Thermoelectric Magnetohydrodynamic Flows and Their Induced Change of Solid–Liquid Interface<br>Shape in Static Magnetic Field-Assisted Directional Solidification. Metallurgical and Materials<br>Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1169-1179.                      | 1.1          | 37        |
| 220 | Large reversible magnetocaloric effect in RE <sub>2</sub> Cu <sub>2</sub> In (RE  =  Er and Tm<br>enhanced refrigerant capacity in its composite materials. Journal Physics D: Applied Physics, 2016, 49,<br>145002.                                                                                   | ) and<br>1.3 | 48        |
| 221 | Preparation of c-axis textured SiC ceramics by a strong magnetic field of 6 T assisted gel-casting process. Ceramics International, 2016, 42, 6168-6177.                                                                                                                                               | 2.3          | 10        |
| 222 | Study of the magnetic phase transitions and magnetocaloric effect in Dy2Cu2In compound. Journal of Alloys and Compounds, 2016, 667, 130-133.                                                                                                                                                           | 2.8          | 46        |
| 223 | Interfacial microstructure and high-temperature strength in silicon nitride/nickel-based superalloy bonding. Journal of Adhesion Science and Technology, 2016, 30, 1430-1440.                                                                                                                          | 1.4          | 6         |
| 224 | Effect of a Transverse Magnetic Field on Solidification Structures in Unmodified and Sr-Modified<br>Al-7wtpctSi Alloys During Directional Solidification. Metallurgical and Materials Transactions A:<br>Physical Metallurgy and Materials Science, 2016, 47, 1198-1214.                               | 1.1          | 8         |
| 225 | EBSD Study on the Effect of a Strong Axial Magnetic Field on the Microstructure and Crystallography of Al-Ni Alloys During Solidification. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1180-1197.                                                 | 1.1          | 8         |
| 226 | Magnetic properties and magnetocaloric effect in TmZnAl and TmAgAl compounds. Journal of Alloys and Compounds, 2016, 656, 635-639.                                                                                                                                                                     | 2.8          | 80        |
| 227 | Preparation of textured porous Al <sub>2</sub> O <sub>3</sub> ceramics by slip casting in a strong magnetic field and its mechanical properties. Crystal Research and Technology, 2015, 50, 645-653.                                                                                                   | 0.6          | 27        |
| 228 | Effect of static magnetic field on microstructure and interdiffusion behavior of Fe/Fe–Si alloy diffusion couple. Journal of Alloys and Compounds, 2015, 645, 369-375.                                                                                                                                 | 2.8          | 13        |
| 229 | Magnetic-field dependence of nucleation undercoolings in non-magnetic metallic melts. Philosophical<br>Magazine Letters, 2015, 95, 37-43.                                                                                                                                                              | 0.5          | 16        |
| 230 | A novel method to fabricate the aligned columnar dendrite via the diffusion under a strong magnetic field. Materials Letters, 2015, 158, 295-299.                                                                                                                                                      | 1.3          | 1         |
| 231 | Effect of a high axial magnetic field on the structure of directionally solidified Al–Si alloys. Journal of Materials Research, 2015, 30, 1043-1055.                                                                                                                                                   | 1.2          | 7         |
| 232 | Reaction diffusion in Ni–Al diffusion couples in steady magnetic fields. Journal of Alloys and<br>Compounds, 2015, 641, 7-13.                                                                                                                                                                          | 2.8          | 34        |
| 233 | Experimental Evidence of the Effect of a High Magnetic Field on the Stray Grains Formation in<br>Cross-Section Change Region for Ni-Based Superalloy During Directional Solidification. Metallurgical<br>and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1461-1466. | 1.1          | 16        |
| 234 | Effects of high static magnetic field on crystal orientation and magnetic property of Bi-5wt.% Zn alloys. Materials Letters, 2015, 140, 68-70.                                                                                                                                                         | 1.3          | 13        |

| #   | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Effect of a transverse magnetic field on the growth of equiaxed grains during directional solidification. Materials Letters, 2015, 161, 595-600.                                                                                                                                        | 1.3 | 5         |
| 236 | Effect of a transverse magnetic field on solidification morphology and microstructures of pure Sn<br>and Sn–15wt% Pb alloys grown by a Czochralski method. Journal of Crystal Growth, 2015, 432, 116-122.                                                                               | 0.7 | 8         |
| 237 | Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification. Journal of Alloys and Compounds, 2015, 620, 10-17.                                                                                                                         | 2.8 | 30        |
| 238 | Fabrication of textured Si3N4 ceramics with $\hat{l}^2$ -Si3N4 powders as raw material by gel-casting under strong magnetic field. Materials Letters, 2014, 135, 218-221.                                                                                                               | 1.3 | 17        |
| 239 | Effect of Multi-Scale Thermoelectric Magnetic Convection on Solidification Microstructure in<br>Directionally Solidified Al-Si Alloys Under a Transverse Magnetic Field. Metallurgical and Materials<br>Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5584-5600. | 1.1 | 31        |
| 240 | Surface tensions of non-polar liquids in high magnetic fields. Journal of Molecular Liquids, 2013, 181, 51-54.                                                                                                                                                                          | 2.3 | 13        |
| 241 | Effect of high magnetic field on diffusion behavior of aluminum in Ni–Al alloy. Materials Letters, 2013,<br>108, 340-342.                                                                                                                                                               | 1.3 | 24        |
| 242 | The effect of magnetic field on precipitation phases of single-crystal nickel-base superalloy during directional solidification. Materials Letters, 2013, 100, 223-226.                                                                                                                 | 1.3 | 26        |
| 243 | Faceted growth of primary Al2Cu crystals during directional solidification in high magnetic field.<br>Journal of Applied Physics, 2013, 114, .                                                                                                                                          | 1.1 | 5         |
| 244 | Modification of liquid/solid interface shape in directionally solidifying Al–Cu alloys by a transverse<br>magnetic field. Journal of Materials Science, 2013, 48, 213-219.                                                                                                              | 1.7 | 27        |
| 245 | Effect of strong magnetic field on solid solubility and microsegregation during directional solidification of Al–Cu alloy. Journal of Materials Research, 2013, 28, 2810-2818.                                                                                                          | 1.2 | 10        |
| 246 | Effect of thermoelectric magnetic force on the array of dendrites during directional solidification of Al–Cu alloys in a high magnetic field. Philosophical Magazine Letters, 2012, 92, 675-682.                                                                                        | 0.5 | 9         |
| 247 | Application of ring method to measure surface tensions of liquids in high magnetic field. Review of Scientific Instruments, 2012, 83, 043906.                                                                                                                                           | 0.6 | 15        |
| 248 | Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field. Acta Materialia, 2012, 60, 3321-3332.                                                                                                 | 3.8 | 82        |
| 249 | Influence of a weak static magnetic field on the primary dendrite arm spacing of a directionally solidified Ni-based superalloy. Materials Letters, 2012, 67, 205-209.                                                                                                                  | 1.3 | 16        |
| 250 | Effect of a low axial magnetic field on the primary Al2Cu phase growth in a directionally solidified<br>Al–Cu hypereutectic alloy. Journal of Crystal Growth, 2011, 336, 67-71.                                                                                                         | 0.7 | 15        |
| 251 | Influence of an axial uniform magnetic field on the solid/liquid interface curvature and<br>macrosegregation in directionally solidified the Al–0.85wt.% Cu alloy. Materials Letters, 2011, 65,<br>3340-3343.                                                                           | 1.3 | 12        |
| 252 | Structure, growth characteristic and magnetic properties in directionally solidified Bi–MnBi<br>composite under strong magnetic field. Acta Materialia, 2011, 59, 6297-6307.                                                                                                            | 3.8 | 16        |

| #   | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Effects of Thermoelectric Magnetic Convection on the Solidification Structure During Directional<br>Solidification under Lower Transverse Magnetic Field. Metallurgical and Materials Transactions A:<br>Physical Metallurgy and Materials Science, 2011, 42, 3459-3471. | 1.1 | 16        |
| 254 | Morphological instability of interface, cell and dendrite during directional solidification under strong magnetic field. Journal of Crystal Growth, 2011, 318, 23-27.                                                                                                    | 0.7 | 8         |
| 255 | Investigation of thermoelectric magnetic force in solid and its effect on morphological instability in directional solidification. Journal of Crystal Growth, 2011, 324, 217-224.                                                                                        | 0.7 | 5         |
| 256 | Columnar-to-equiaxed transitions in al-based alloys during directional solidification under a high magnetic field. Journal of Crystal Growth, 2010, 312, 267-272.                                                                                                        | 0.7 | 40        |
| 257 | Morphological instabilities and alignment of lamellar eutectics during directional solidification under a strong magnetic field. Acta Materialia, 2010, 58, 1403-1417.                                                                                                   | 3.8 | 34        |
| 258 | Effect of a high magnetic field on the Al–Al3Ni fiber eutectic during directional solidification. Acta<br>Materialia, 2010, 58, 2430-2441.                                                                                                                               | 3.8 | 34        |
| 259 | ON NUCLEATION TEMPERATURE OF PURE ALUMINUM IN MAGNETIC FIELDS. Progress in Electromagnetics Research Letters, 2010, 15, 45-52.                                                                                                                                           | 0.4 | 24        |
| 260 | Application of differential thermal analysis to investigation of magnetic field effect on solidification of Al–Cu hypereutectic alloy. Journal of Alloys and Compounds, 2010, 505, 108-112.                                                                              | 2.8 | 26        |
| 261 | Enhancement on the faceted growth and the coarsening of the MnBi primary phase during the directional solidification under a high magnetic field. Philosophical Magazine Letters, 2009, 89, 475-482.                                                                     | 0.5 | 3         |
| 262 | Design and application of differential thermal analysis apparatus in high magnetic fields. Review of<br>Scientific Instruments, 2009, 80, 073907.                                                                                                                        | 0.6 | 14        |
| 263 | Degeneration of columnar dendrites during directional solidification under a high magnetic field.<br>Scripta Materialia, 2009, 60, 443-446.                                                                                                                              | 2.6 | 15        |
| 264 | Effect of magnetic fields on solid-melt phase transformation in pure bismuth. Materials Letters, 2009, 63, 269-271.                                                                                                                                                      | 1.3 | 20        |
| 265 | A dramatic increase in dendrite number for directionally solidified superalloy DZ417G with a strong static magnetic field. Materials Letters, 2009, 63, 382-385.                                                                                                         | 1.3 | 12        |
| 266 | Effect of a high magnetic field on the morphology and magnetic properties of the MnBi compound<br>during the Mn1.08Bi–MnBi phase transformation process. Journal of Magnetism and Magnetic<br>Materials, 2009, 321, 2694-2700.                                           | 1.0 | 15        |
| 267 | Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification. Acta Materialia, 2009, 57, 1689-1701.                                                                            | 3.8 | 32        |
| 268 | Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field. Acta Materialia, 2009, 57, 2180-2197.                                                                 | 3.8 | 90        |
| 269 | Effect of high magnetic field on the primary dendrite arm spacing and segregation of directionally solidified superalloy DZ417G. Journal of Alloys and Compounds, 2009, 487, 612-617.                                                                                    | 2.8 | 42        |
| 270 | Effect of an axial high magnetic field on the microstructure in directionally solidified Pb–Sn eutectic alloy. Journal of Crystal Growth, 2008, 310, 3584-3589.                                                                                                          | 0.7 | 7         |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Phase distribution and phase structure control through a high gradient magnetic field during the solidification process. Materials & Design, 2008, 29, 1796-1801.                                                                           | 5.1 | 13        |
| 272 | Morphological instability of cell and dendrite during directional solidification under a high magnetic field. Acta Materialia, 2008, 56, 3146-3161.                                                                                         | 3.8 | 50        |
| 273 | Effects of parallel magnetic field on electrocodeposition behavior of Ni/nanoparticle composite electroplating. Applied Surface Science, 2008, 254, 5649-5654.                                                                              | 3.1 | 57        |
| 274 | The alignment, aggregation and magnetization behaviors in MnBi–Bi composites solidified under a<br>high magnetic field. Intermetallics, 2007, 15, 845-855.                                                                                  | 1.8 | 21        |
| 275 | Influence of an axial high magnetic field on the liquid–solid transformation in Al–Cu hypoeutectic alloys and on the microstructure of the solid. Acta Materialia, 2007, 55, 1377-1386.                                                     | 3.8 | 63        |
| 276 | Influence of thermoelectric effects on the solid–liquid interface shape and cellular morphology in<br>the mushy zone during the directional solidification of Al–Cu alloys under a magnetic field. Acta<br>Materialia, 2007, 55, 3803-3813. | 3.8 | 148       |
| 277 | Influence of a high magnetic field on columnar dendrite growth during directional solidification.<br>Acta Materialia, 2007, 55, 5333-5347.                                                                                                  | 3.8 | 36        |
| 278 | Magnetic alignment of MnBi crystals and magnetic properties of MnBi–Bi composites. Current Applied<br>Physics, 2007, 7, 555-560.                                                                                                            | 1.1 | 3         |
| 279 | Effect of a high magnetic field on the microstructure in directionally solidified Al–12wt%Ni alloy.<br>Journal of Crystal Growth, 2007, 306, 187-194.                                                                                       | 0.7 | 28        |
| 280 | Effect of a high axial magnetic field on the microstructure in a directionally solidified Al–Al2Cu<br>eutectic alloy. Acta Materialia, 2006, 54, 5349-5360.                                                                                 | 3.8 | 73        |
| 281 | Effect of Non-metallic Inclusions on Subsurface Stress and Fatigue Life of High-speed Railway<br>Bearings. IOP Conference Series: Earth and Environmental Science, 0, 632, 052001.                                                          | 0.2 | 2         |
| 282 | Molecular Dynamics Simulations of the Thermally and Stress-Activated Glide of a ⟠0001⟩{11ì00} Screw<br>Dislocation in AlN. Crystal Growth and Design, 0, , .                                                                                | 1.4 | 1         |