Dominic P Del Re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10209530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiological Reviews, 2019, 99, 1765-1817.	28.8	550
3	Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nature Medicine, 2013, 19, 1478-1488.	30.7	426
4	The Rac and Rho Hall of Fame. Circulation Research, 2006, 98, 730-742.	4.5	311
5	Yes-associated Protein Isoform 1 (Yap1) Promotes Cardiomyocyte Survival and Growth to Protect against Myocardial Ischemic Injury. Journal of Biological Chemistry, 2013, 288, 3977-3988.	3.4	211
6	A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nature Communications, 2014, 5, 3315.	12.8	209
7	Trehalose-Induced Activation of Autophagy Improves Cardiac Remodeling After Myocardial Infarction. Journal of the American College of Cardiology, 2018, 71, 1999-2010.	2.8	195
8	miR-206 Mediates YAP-Induced Cardiac Hypertrophy and Survival. Circulation Research, 2015, 117, 891-904.	4.5	133
9	RhoA/Rho Kinase Up-regulate Bax to Activate a Mitochondrial Death Pathway and Induce Cardiomyocyte Apoptosis. Journal of Biological Chemistry, 2007, 282, 8069-8078.	3.4	124
10	Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice. Journal of Clinical Investigation, 2010, 120, 3555-3567.	8.2	111
11	Mst1 Promotes Cardiac Myocyte Apoptosis through Phosphorylation and Inhibition of Bcl-xL. Molecular Cell, 2014, 54, 639-650.	9.7	110
12	mTORC2 Regulates Cardiac Response to Stress by Inhibiting MST1. Cell Reports, 2015, 11, 125-136.	6.4	110
13	NF2 Activates Hippo Signaling and Promotes Ischemia/Reperfusion Injury in the Heart. Circulation Research, 2016, 119, 596-606.	4.5	103
14	Focal Adhesion Kinase as a RhoA-activable Signaling Scaffold Mediating Akt Activation and Cardiomyocyte Protection. Journal of Biological Chemistry, 2008, 283, 35622-35629.	3.4	96
15	RhoA protects the mouse heart against ischemia/reperfusion injury. Journal of Clinical Investigation, 2011, 121, 3269-3276.	8.2	83
16	Hippo Deficiency Leads to Cardiac Dysfunction Accompanied by Cardiomyocyte Dedifferentiation During Pressure Overload. Circulation Research, 2019, 124, 292-305.	4.5	82
17	The Hippo signal transduction network in skeletal and cardiac muscle. Science Signaling, 2014, 7, re4.	3.6	74
18	Blockade of Fibroblast YAP Attenuates Cardiac Fibrosis and Dysfunction Through MRTF-A Inhibition. IACC Basic To Translational Science, 2020, 5, 931-945.	4.1	70

DOMINIC P DEL RE

#	Article	IF	CITATIONS
19	Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. Journal of Biological Chemistry, 2019, 294, 3603-3617.	3.4	63
20	Guidelines for in vivo mouse models of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1056-H1073.	3.2	53
21	Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?. Journal of Cardiovascular Translational Research, 2010, 3, 330-343.	2.4	44
22	Mst1-mediated phosphorylation of Bcl-xL is required for myocardial reperfusion injury. JCI Insight, 2016, 1, .	5.0	44
23	AAV-mediated YAP expression in cardiac fibroblasts promotes inflammation and increases fibrosis. Scientific Reports, 2021, 11, 10553.	3.3	28
24	Yes-Associated Protein (YAP) Facilitates Pressure Overload–Induced Dysfunction in the Diabetic Heart. JACC Basic To Translational Science, 2019, 4, 611-622.	4.1	25
25	A growing role for the Hippo signaling pathway in the heart. Journal of Molecular Medicine, 2017, 95, 465-472.	3.9	24
26	The effects of macrophages on cardiomyocyte calciumâ€handling function using in vitro culture models. Physiological Reports, 2019, 7, e14137.	1.7	18
27	Beyond the Cardiomyocyte. Circulation Research, 2018, 123, 30-32.	4.5	13
28	Hippo Signaling in the Heart – Non-Canonical Pathways Impact Growth, Survival and Function –. Circulation Journal, 2016, 80, 1504-1510.	1.6	12
29	The tumor suppressor RASSF1A modulates inflammation and injury in the reperfused murine myocardium. Journal of Biological Chemistry, 2019, 294, 13131-13144.	3.4	11
30	Enhancing the Potential of Cardiac Progenitor Cells. Circulation Research, 2012, 110, 1154-1156.	4.5	10
31	Lats2 promotes heart failure by stimulating p53-mediated apoptosis during pressure overload. Scientific Reports, 2021, 11, 23469.	3.3	9
32	Optimizing Cell-Based Therapy for Cardiac Regeneration. Circulation, 2009, 120, 831-834.	1.6	8
33	RASSF1A Signaling in the Heart: Novel Functions beyond Tumor Suppression. Molecular Biology International, 2012, 2012, 1-6.	1.7	8
34	H-Ras Isoform Mediates Protection Against Pressure Overload–Induced Cardiac Dysfunction in Part Through Activation of AKT. Circulation: Heart Failure, 2017, 10, .	3.9	8
35	The hippo signaling pathway: implications for heart regeneration and disease. Clinical and Translational Medicine, 2014, 3, 27.	4.0	7
36	Injection of Wild Type Embryonic Stem Cells into Mst1 Transgenic Blastocysts Prevents Adult-Onset Cardiomyopathy. Stem Cell Reviews and Reports, 2011, 7, 326-330.	5.6	6

DOMINIC P DEL RE

#	Article	IF	CITATIONS
37	Hematopoietic Id Deletion Triggers Endomyocardial Fibrotic and Vascular Defects in the Adult Heart. Scientific Reports, 2017, 7, 3079.	3.3	3
38	Mechanisms of Ischemic Heart Injury. Cells, 2022, 11, 1384.	4.1	3
39	Hippo-Yap signaling in cardiac and fibrotic remodeling. Current Opinion in Physiology, 2022, 26, 100492.	1.8	3
40	Is Raf1 a nexus for cardiac hypertrophic signaling in human disease?. Journal of Molecular and Cellular Cardiology, 2011, 51, 1-3.	1.9	1
41	Elucidating ERK2 function in the heart. Journal of Molecular and Cellular Cardiology, 2014, 72, 336-338.	1.9	1
42	Abstract 17904: Deficiency of Yes-associated Protein Promotes Cardiac Dysfunction in Response to Pressure Overload in the Mouse Heart. Circulation, 2015, 132, .	1.6	0
43	Abstract 18122: Mir-206 Plays an Important Role in Mediating Pressure Overload-induced Cardiac Hypertrophy. Circulation, 2015, 132, .	1.6	Ο
44	NF2 Activates Hippo Signaling and Promotes Ischemia/Reperfusion Injury in Heart. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR2-1.	0.0	0
45	Myeloid YAP Inhibition Improves Cardiac Phenotype During Pressure Overload Stress. FASEB Journal, 2022, 36, .	0.5	0