Guodong Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1020932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Luminescent Functional Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 1126-1162.	23.0	5,099
2	Metalâ^'Organic Frameworks with Functional Pores for Recognition of Small Molecules. Accounts of Chemical Research, 2010, 43, 1115-1124.	7.6	1,919
3	Methane storage in metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5657-5678.	18.7	1,449
4	Metal–Organic Frameworks as Platforms for Functional Materials. Accounts of Chemical Research, 2016, 49, 483-493.	7.6	1,403
5	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
6	A Luminescent Metal–Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. Angewandte Chemie - International Edition, 2009, 48, 500-503.	7.2	1,041
7	A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. Journal of the American Chemical Society, 2012, 134, 3979-3982.	6.6	1,033
8	A Luminescent Microporous Metalâ^'Organic Framework for the Recognition and Sensing of Anions. Journal of the American Chemical Society, 2008, 130, 6718-6719.	6.6	962
9	Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coordination Chemistry Reviews, 2014, 273-274, 76-86.	9.5	937
10	A Highly Sensitive Mixed Lanthanide Metal–Organic Framework Self-Calibrated Luminescent Thermometer. Journal of the American Chemical Society, 2013, 135, 15559-15564.	6.6	608
11	Dualâ€Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing. Advanced Materials, 2015, 27, 1420-1425.	11.1	604
12	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
13	A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chemical Communications, 2011, 47, 3153.	2.2	426
14	Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe ³⁺ . Journal of Materials Chemistry A, 2016, 4, 10900-10905.	5.2	412
15	Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nature Communications, 2013, 4, 2719.	5.8	381
16	Metal–organic frameworks for luminescence thermometry. Chemical Communications, 2015, 51, 7420-7431.	2.2	354
17	A robust near infrared luminescent ytterbium metal–organic framework for sensing of small molecules. Chemical Communications, 2011, 47, 5551-5553.	2.2	345
18	A Zn4O-containing doubly interpenetrated porous metal–organic framework for photocatalytic decomposition of methyl orange. Chemical Communications, 2011, 47, 11715.	2.2	319

#	Article	IF	CITATIONS
19	Luminescent Metal–Organic Framework Films As Highly Sensitive and Fast-Response Oxygen Sensors. Journal of the American Chemical Society, 2014, 136, 5527-5530.	6.6	319
20	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced Materials, 2017, 29, 1704210.	11.1	310
21	Secondâ€Order Nonlinear Optical Activity Induced by Ordered Dipolar Chromophores Confined in the Pores of an Anionic Metalâ€ ^a Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 10542-10545.	7.2	279
22	Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index. Advanced Functional Materials, 2015, 25, 4796-4802.	7.8	260
23	A Chemically Stable Hofmannâ€Type Metalâ^'Organic Framework with Sandwich‣ike Binding Sites for Benchmark Acetylene Capture. Advanced Materials, 2020, 32, e1908275.	11.1	236
24	A porous Zr-cluster-based cationic metal–organic framework for highly efficient Cr ₂ O ₇ ^{2â^} removal from water. Chemical Communications, 2015, 51, 14732-14734.	2.2	234
25	Enhanced Near-Infraredâ^'Luminescence in an Erbium Tetrafluoroterephthalate Framework. Inorganic Chemistry, 2006, 45, 8882-8886.	1.9	233
26	Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews, 2018, 373, 167-198.	9.5	211
27	Turn-on and Ratiometric Luminescent Sensing of Hydrogen Sulfide Based on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2016, 8, 32259-32265.	4.0	207
28	Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metal–organic framework materials. Journal of Materials Chemistry, 2012, 22, 3210.	6.7	200
29	Broadband Extrinsic Selfâ€Trapped Exciton Emission in Snâ€Doped 2D Leadâ€Halide Perovskites. Advanced Materials, 2019, 31, e1806385.	11.1	198
30	A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer. Chemical Communications, 2014, 50, 719-721.	2.2	192
31	Two-Photon Responsive Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 4026-4029.	6.6	185
32	Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. Journal of the American Chemical Society, 2020, 142, 633-640.	6.6	183
33	Mixed-Metal–Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20999-21004.	4.0	182
34	Multifunctional lanthanide coordination polymers. Progress in Polymer Science, 2015, 48, 40-84.	11.8	176
35	Morphology regulation of metal–organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 18215-18219.	5.2	168
36	Polarized three-photon-pumped laser in a single MOF microcrystal. Nature Communications, 2016, 7, 11087.	5.8	165

#	Article	IF	CITATIONS
37	Enhancing Oxygen Evolution Reaction through Modulating Electronic Structure of Trimetallic Electrocatalysts Derived from Metal–Organic Frameworks. Small, 2019, 15, e1901940.	5.2	163
38	Sensing-functional luminescent metal–organic frameworks. CrystEngComm, 2016, 18, 3746-3759.	1.3	160
39	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature. Chemical Communications, 2013, 49, 6719.	2.2	158
40	Porous anatase TiO ₂ constructed from a metal–organic framework for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 12571.	5.2	153
41	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for highly selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ gas separation at room temperature. Journal of Materials Chemistry A. 2013. 1. 77-81.	5.2	148
42	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie - International Edition, 2021, 60, 15995-16002.	7.2	148
43	A luminescent nanoscale metal–organic framework with controllable morphologies for spore detection. Chemical Communications, 2012, 48, 7377.	2.2	146
44	A New Approach to Construct a Doubly Interpenetrated Microporous Metal–Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chemistry - A European Journal, 2011, 17, 7817-7822.	1.7	137
45	Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity. Scientific Reports, 2015, 5, 11712.	1.6	133
46	Direct Synthesis of Porous Nanorodâ€Type Graphitic Carbon Nitride/CuO Composite from Cu–Melamine Supramolecular Framework towards Enhanced Photocatalytic Performance. Chemistry - an Asian Journal, 2015, 10, 1276-1280.	1.7	131
47	Design and Synthesis of an MOF Thermometer with High Sensitivity in the Physiological Temperature Range. Inorganic Chemistry, 2015, 54, 11193-11199.	1.9	130
48	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. Journal of the American Chemical Society, 2022, 144, 2614-2623.	6.6	127
49	A near infrared luminescent metal–organic framework for temperature sensing in the physiological range. Chemical Communications, 2015, 51, 17676-17679.	2.2	126
50	A Microporous Metal–Organic Framework with Lewis Basic Nitrogen Sites for High C ₂ H ₂ Storage and Significantly Enhanced C ₂ H ₂ /CO ₂ Separation at Ambient Conditions. Inorganic Chemistry, 2016, 55, 7214-7218.	1.9	124
51	Confinement of Perovskiteâ€QDs within a Single MOF Crystal for Significantly Enhanced Multiphoton Excited Luminescence. Advanced Materials, 2019, 31, e1806897.	11.1	124
52	A Terbium Metal–Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Hg ²⁺ lons in Aqueous Solution. Chemistry - A European Journal, 2016, 22, 18429-18434.	1.7	121
53	Engineering microporous ethane-trapping metal–organic frameworks for boosting ethane/ethylene separation. Journal of Materials Chemistry A, 2020, 8, 3613-3620.	5.2	120
54	Dense Packing of Acetylene in a Stable and Lowâ€Cost Metal–Organic Framework for Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 25068-25074.	7.2	116

#	Article	IF	CITATIONS
55	A luminescent cerium metal–organic framework for the turn-on sensing of ascorbic acid. Chemical Communications, 2017, 53, 11221-11224.	2.2	111
56	lsostructural Tb ³⁺ /Eu ³⁺ Co-Doped Metal–Organic Framework Based on Pyridine-Containing Dicarboxylate Ligands for Ratiometric Luminescence Temperature Sensing. Inorganic Chemistry, 2019, 58, 2637-2644.	1.9	111
57	A Metal–Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. Advanced Materials, 2018, 30, e1704792.	11.1	109
58	A Rodâ€Packing Hydrogenâ€Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie - International Edition, 2021, 60, 10304-10310.	7.2	104
59	A Doubly Interpenetrated Metal–Organic Framework with Open Metal Sites and Suitable Pore Sizes for Highly Selective Separation of Small Hydrocarbons at Room Temperature. Crystal Growth and Design, 2013, 13, 2094-2097.	1.4	96
60	Ratiometric dual-emitting MOF⊃dye thermometers with a tunable operating range and sensitivity. Journal of Materials Chemistry C, 2017, 5, 1607-1613.	2.7	96
61	Laser properties and photostabilities of laser dyes doped in ORMOSILs. Optical Materials, 2004, 24, 621-628.	1.7	94
62	A porphyrin-based metal–organic framework as a pH-responsive drug carrier. Journal of Solid State Chemistry, 2016, 237, 307-312.	1.4	93
63	A new metal–organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments. Journal of Materials Chemistry A, 2014, 2, 2628.	5.2	91
64	Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. Journal of Materials Chemistry A, 2014, 2, 7912.	5.2	89
65	A Eu/Tb-mixed MOF for luminescent high-temperature sensing. Journal of Solid State Chemistry, 2017, 246, 341-345.	1.4	89
66	Flexible Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes: A New Platform for H ₂ S Sensors. Small, 2018, 14, e1801563.	5.2	88
67	Pressure controlled drug release in a Zr-cluster-based MOF. Journal of Materials Chemistry B, 2016, 4, 6398-6401.	2.9	86
68	A Large Capacity Cationic Metal–Organic Framework Nanocarrier for Physiological pH Responsive Drug Delivery. Molecular Pharmaceutics, 2016, 13, 2782-2786.	2.3	85
69	A cationic microporous metal–organic framework for highly selective separation of small hydrocarbons at room temperature. Journal of Materials Chemistry A, 2013, 1, 9916.	5.2	83
70	A new fluorescent and colorimetric probe for trace hydrazine with a wide detection range in aqueous solution. Dyes and Pigments, 2013, 99, 966-971.	2.0	83
71	Doubly Interpenetrated Metal–Organic Framework for Highly Selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ Separation at Room Temperature. Crystal Growth and Design, 2016, 16, 7194-7197.	1.4	80
72	Cryogenic Luminescent Tb/Eu-MOF Thermometer Based on a Fluorine-Modified Tetracarboxylate Ligand. Inorganic Chemistry, 2018, 57, 12596-12602.	1.9	80

#	Article	IF	CITATIONS
73	A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF. Journal of Materials Chemistry C, 2017, 5, 5044-5047.	2.7	78
74	Molecular sensing with lanthanide luminescence in a 3D porous metal-organic framework. Journal of Alloys and Compounds, 2009, 484, 601-604.	2.8	77
75	A Rare Uninodal 9-Connected Metalâ^'Organic Framework with Permanent Porosity. Crystal Growth and Design, 2010, 10, 2372-2375.	1.4	71
76	Luminescent Metal–Organic Frameworks for White LEDs. Advanced Optical Materials, 2021, 9, 2001817.	3.6	71
77	Robust and Radiation-Resistant Hofmann-Type Metal–Organic Frameworks for Record Xenon/Krypton Separation. Journal of the American Chemical Society, 2022, 144, 3200-3209.	6.6	71
78	A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF. Dalton Transactions, 2017, 46, 7549-7555.	1.6	68
79	Low Cytotoxic Metal–Organic Frameworks as Temperatureâ€Responsive Drug Carriers. ChemPlusChem, 2016, 81, 804-810.	1.3	67
80	A stable lanthanide-functionalized nanoscale metal-organic framework as a fluorescent probe for pH. Sensors and Actuators B: Chemical, 2018, 254, 1069-1077.	4.0	67
81	A metal–organic framework for selectively sensing of PO43â^' anion in aqueous solution. Journal of Alloys and Compounds, 2011, 509, 2552-2554.	2.8	66
82	Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode. Journal of Solid State Chemistry, 2020, 281, 121032.	1.4	64
83	Thermal Stimuliâ€Triggered Drug Release from a Biocompatible Porous Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 10215-10221.	1.7	62
84	Efficient separation of C ₂ H ₂ from C ₂ H ₂ /CO ₂ mixtures in an acid–base resistant metal–organic framework. Chemical Communications, 2018, 54, 4846-4849.	2.2	62
85	Efficient Energy Transfer within Dyes Encapsulated Metal–Organic Frameworks to Achieve High Performance White Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800968.	3.6	62
86	Shape Evolution of Highly Crystalline Anatase TiO ₂ Nanobipyramids. Crystal Growth and Design, 2011, 11, 5221-5226.	1.4	61
87	A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature. Chemical Communications, 2013, 49, 2043.	2.2	61
88	A luminescent turn-up metal–organic framework sensor for tryptophan based on singlet–singlet Förster energy transfer. Journal of Materials Chemistry B, 2018, 6, 5174-5180.	2.9	61
89	A highly sensitive near-infrared luminescent metal–organic framework thermometer in the physiological range. Chemical Communications, 2016, 52, 8259-8262.	2.2	60
90	Nanoscale fluorescent metal–organic framework composites as a logic platform for potential diagnosis of asthma. Biosensors and Bioelectronics, 2019, 130, 65-72.	5.3	60

#	Article	IF	CITATIONS
91	Multivariable Sieving and Hierarchical Recognition for Organic Toxics in Nonhomogeneous Channel of MOFs. CheM, 2019, 5, 1337-1350.	5.8	59
92	A new fluorescent probe for distinguishing Zn2+ and Cd2+ with high sensitivity and selectivity. Dalton Transactions, 2013, 42, 11465.	1.6	58
93	A dye encapsulated terbium-based metal–organic framework for ratiometric temperature sensing. Dalton Transactions, 2016, 45, 18689-18695.	1.6	57
94	Highly sensitive and selective detection of mercury (II) based on a zirconium metal-organic framework in aqueous media. Journal of Solid State Chemistry, 2017, 253, 277-281.	1.4	57
95	Photo-induced electron transfer in a metal–organic framework: a new approach towards a highly sensitive luminescent probe for Fe ³⁺ . Chemical Communications, 2019, 55, 11231-11234.	2.2	55
96	A novel anion-pillared metal–organic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. Journal of Materials Chemistry A, 2021, 9, 9248-9255.	5.2	55
97	Microporous Metal–Organic Framework with Exposed Amino Functional Group for High Acetylene Storage and Excellent C ₂ H ₂ /CO ₂ and C ₂ H ₂ /CH ₄ Separations. Crystal Growth and Design, 2017, 17, 2319-2322.	1.4	54
98	Ratiometric luminescence sensing based on a mixed Ce/Eu metal–organic framework. Journal of Materials Chemistry C, 2018, 6, 2054-2059.	2.7	54
99	An amino-decorated NbO-type metal–organic framework for high C ₂ H ₂ storage and selective CO ₂ capture. RSC Advances, 2015, 5, 77417-77422.	1.7	53
100	Highly stable Y(<scp>iii</scp>)-based metal organic framework with two molecular building block for selective adsorption of C ₂ H ₂ and CO ₂ over CH ₄ . Inorganic Chemistry Frontiers, 2018, 5, 1193-1198.	3.0	51
101	Postsynthetic modification of metal–organic framework for hydrogen sulfide detection. Applied Surface Science, 2015, 355, 814-819.	3.1	50
102	Highly Stable Mixed‣anthanide Metal–Organic Frameworks for Selfâ€Referencing and Colorimetric Luminescent pH Sensing. ChemNanoMat, 2017, 3, 51-57.	1.5	50
103	Temperature-dependent luminescent properties of Eu–Tb complexes synthesized in situ in gel glass. Applied Physics Letters, 2005, 86, 071907.	1.5	48
104	An MOFâ€Based Luminescent Sensor Array for Pattern Recognition and Quantification of Metal Ions. Advanced Optical Materials, 2021, 9, 2002180.	3.6	48
105	A zirconium-based metal-organic framework with encapsulated anionic drug for uncommonly controlled oral drug delivery. Microporous and Mesoporous Materials, 2019, 275, 229-234.	2.2	47
106	Low-Cost and High-Performance Microporous Metal–Organic Framework for Separation of Acetylene from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2019, 7, 1667-1672.	3.2	47
107	A Novel Hydrogen-Bonded Organic Framework with Highly Permanent Porosity for Boosting Ethane/Ethylene Separation. , 2021, 3, 497-503.		46
108	Encapsulation of dyes in metal–organic frameworks and their tunable nonlinear optical properties. Dalton Transactions, 2016, 45, 4218-4223.	1.6	45

#	Article	IF	CITATIONS
109	A biocompatible metal–organic framework as a pH and temperature dual-responsive drug carrier. Dalton Transactions, 2018, 47, 15882-15887.	1.6	45
110	A luminescent metal–organic framework integrated hydrogel optical fibre as a photoluminescence sensing platform for fluorescence detection. Journal of Materials Chemistry C, 2019, 7, 897-904.	2.7	45
111	A porous Zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release. Microporous and Mesoporous Materials, 2017, 249, 55-60.	2.2	44
112	In situ secondary growth of Eu(III)-organic framework film for fluorescence sensing of sulfur dioxide. Sensors and Actuators B: Chemical, 2018, 260, 63-69.	4.0	44
113	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie, 2021, 133, 16131-16138.	1.6	43
114	Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission. Dyes and Pigments, 2013, 97, 58-64.	2.0	41
115	A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Science China Materials, 2019, 62, 1315-1322.	3.5	41
116	A turn-on MOF-based luminescent sensor for highly selective detection of glutathione. Journal of Solid State Chemistry, 2019, 270, 317-323.	1.4	41
117	Three-dimensional copper (II) metal–organic framework with open metal sites and anthracene nucleus for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature. Microporous and Mesoporous Materials, 2013, 181, 99-104.	2.2	40
118	Synthesis <i>In Situ</i> , Characterization, and Photostability of Europium βâ€Điketone Chelates in Organically Modified Silicates (ORMOSILs). Journal of the American Ceramic Society, 2000, 83, 703-708.	1.9	39
119	Enhancement of nonlinear optical activity in new six-branched dendritic dipolar chromophore. Journal of Materials Chemistry, 2011, 21, 3197.	6.7	38
120	Preparation and thiols sensing of luminescent metal–organic framework films functionalized with lanthanide ions. Microporous and Mesoporous Materials, 2013, 179, 198-204.	2.2	38
121	A turn-on fluorescent probe for Cd ²⁺ detection in aqueous environments based on an imine functionalized nanoscale metal–organic framework. RSC Advances, 2017, 7, 54892-54897.	1.7	38
122	MOFâ€Based Organic Microlasers. Advanced Optical Materials, 2019, 7, 1900077.	3.6	38
123	A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection. Journal of Solid State Chemistry, 2019, 275, 38-42.	1.4	38
124	A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid. Journal of Molecular Structure, 2020, 1209, 127986.	1.8	38
125	A new fluorescent probe for Zn ²⁺ with red emission and its application in bioimaging. Dalton Transactions, 2014, 43, 8048-8053.	1.6	37
126	A new microporous metal–organic framework with open metal sites and exposed carboxylic acid groups for selective separation of CO ₂ /CH ₄ and C ₂ H ₂ /CH ₄ . RSC Advances, 2014, 4, 36419.	1.7	37

#	Article	IF	CITATIONS
127	Novel Microporous Metal–Organic Framework Exhibiting High Acetylene and Methane Storage Capacities. Inorganic Chemistry, 2015, 54, 4377-4381.	1.9	36
128	A novel methoxy-decorated metal–organic framework exhibiting high acetylene and carbon dioxide storage capacities. CrystEngComm, 2017, 19, 1464-1469.	1.3	36
129	Dyes Encapsulated Nanoscale Metal–Organic Frameworks for Multimode Temperature Sensing with High Spatial Resolution. , 2021, 3, 1426-1432.		36
130	Energy transfer mechanism between laser dyes doped in ORMOSILs. Chemical Physics Letters, 2005, 402, 389-394.	1.2	35
131	A fluorescent pH chemosensor for strongly acidic conditions based on the intramolecular charge transfer (ICT) effect. RSC Advances, 2013, 3, 4872.	1.7	35
132	Highly selective separation of small hydrocarbons and carbon dioxide in a metal–organic framework with open copper(ii) coordination sites. RSC Advances, 2014, 4, 23058.	1.7	35
133	Influence of the thickness and composition of the solid-state dye laser media on the laser properties. Optics Communications, 2002, 204, 277-282.	1.0	34
134	A novel metal-organic framework for high storage and separation of acetylene at room temperature. Journal of Solid State Chemistry, 2016, 241, 152-156.	1.4	34
135	Chemically Stable Hafnium-Based Metal–Organic Framework for Highly Efficient C ₂ H ₆ /C ₂ 4 Separation under Humid Conditions. ACS Applied Materials & Interfaces, 2021, 13, 18792-18799.	4.0	34
136	Enhanced Luminescence of an Erbium (III) Ion-Association Ternary Complex with a Near-Infrared Dye. Journal of Physical Chemistry B, 2004, 108, 8084-8088.	1.2	33
137	Encapsulation of coumarin dye within lanthanide MOFs as highly efficient white-light-emitting phosphors for white LEDs. CrystEngComm, 2016, 18, 8366-8371.	1.3	33
138	A highly stable amino-coordinated MOF for unprecedented block off N ₂ adsorption and extraordinary CO ₂ /N ₂ separation. Chemical Communications, 2016, 52, 13568-13571.	2.2	33
139	Color-tunable and white-light emitting lanthanide complexes based on (CexEuyTb1â^'xâ^'y)2(BDC)3(H2O)4. Journal of Alloys and Compounds, 2012, 510, L5-L8.	2.8	32
140	A series of multifunctional coordination polymers based on terpyridine and zinc halide: second-harmonic generation and two-photon absorption properties and intracellular imaging. Journal of Materials Chemistry B, 2017, 5, 5458-5463.	2.9	31
141	Metal-organic framework film for fluorescence turn-on H2S gas sensing and anti-counterfeiting patterns. Science China Materials, 2019, 62, 1445-1453.	3.5	31
142	Current Status of Microporous Metal–Organic Frameworks for Hydrocarbon Separations. Topics in Current Chemistry, 2019, 377, 33.	3.0	31
143	A novel 2,6-dicarbonylpyridine-based fluorescent chemosensor for Co2+ with high selectivity and sensitivity. Analyst, The, 2011, 136, 5283.	1.7	30
144	Facile synthesis of graphene-supported mesoporous Mn3O4 nanosheets with a high-performance in Li-ion batteries. RSC Advances, 2014, 4, 5367.	1.7	30

#	Article	IF	CITATIONS
145	Controllable broadband multicolour single-mode polarized laser in a dye-assembled homoepitaxial MOF microcrystal. Light: Science and Applications, 2020, 9, 138.	7.7	30
146	Structural Variation and Switchable Nonlinear Optical Behavior of Metal–Organic Frameworks. Small, 2021, 17, e2006649.	5.2	30
147	A Rodâ€Packing Hydrogenâ€Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie, 2021, 133, 10392-10398.	1.6	29
148	Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework. Journal of Solid State Chemistry, 2017, 245, 127-131.	1.4	28
149	A Twoâ€Dimensional Metal–Organic Framework as a Fluorescent Probe for Ascorbic Acid Sensing. European Journal of Inorganic Chemistry, 2018, 2018, 173-177.	1.0	28
150	A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations. Journal of the European Ceramic Society, 2019, 39, 5018-5029.	2.8	28
151	Polyurethane-coated luminescent dye@MOF composites for highly-stable white LEDs. Journal of Materials Chemistry C, 2020, 8, 12308-12313.	2.7	28
152	Periodically Aligned Dye Molecules Integrated in a Single MOF Microcrystal Exhibit Singleâ€Mode Linearly Polarized Lasing. Advanced Optical Materials, 2017, 5, 1601040.	3.6	27
153	A highly sensitive luminescent metal–organic framework thermometer for physiological temperature sensing. Journal of Rare Earths, 2018, 36, 561-566.	2.5	27
154	Post-modified metal-organic framework as a turn-on fluorescent probe for potential diagnosis of neurological diseases. Microporous and Mesoporous Materials, 2019, 288, 109610.	2.2	27
155	A fluorinated Zr-based MOF of high porosity for high CH4 storage. Journal of Solid State Chemistry, 2019, 277, 139-142.	1.4	27
156	Synthesis of different CuO nanostructures from Cu(OH) ₂ nanorods through changing drying medium for lithium-ion battery anodes. RSC Advances, 2015, 5, 28611-28618.	1.7	26
157	Energy Transfer in Metal–Organic Frameworks and Its Applications. Small Structures, 2020, 1, 2000019.	6.9	26
158	Time-resolved spectroscopic study of Eu(TTA)3(TPPO)2 chelate in situ synthesized in vinyltriethoxysilane-derived sol–gel-processed glass. Journal of Luminescence, 2002, 96, 211-218.	1.5	25
159	Six-branched chromophores with isolation groups: synthesis and enhanced optical nonlinearity. Journal of Materials Chemistry, 2012, 22, 9202.	6.7	25
160	Synthesis, structure and temperature sensing of a lanthanide-organic framework constructed from a pyridine-containing tetracarboxylic acid ligand. CrystEngComm, 2018, 20, 7395-7400.	1.3	25
161	In situ synthesis and photophysical properties of the Eu(TTA) 3 Dipy complex in vinyltriethoxysilane-derived gel glass. Journal of Physics and Chemistry of Solids, 2002, 63, 1829-1834.	1.9	24
162	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	1.0	24

#	Article	IF	CITATIONS
163	Multiâ€phase glassâ€ceramics containing CaF ₂ : Er ³⁺ and ZnAl ₂ O ₄ :Cr ³⁺ nanocrystals for optical temperature sensing. Journal of the American Ceramic Society, 2019, 102, 2472-2481.	1.9	24
164	Stabilization of Fluorescent [Ag _{<i>m</i>}] ^{<i>n</i>+} Quantum Clusters in Multiphase Inorganic Glass-Ceramics for White LEDs. ACS Applied Nano Materials, 2019, 2, 2854-2863.	2.4	24
165	Near-infrared-emissive metal–organic frameworks. Dalton Transactions, 2019, 48, 6669-6675.	1.6	24
166	A fluorometric metal-organic framework oxygen sensor: from sensitive powder to portable optical fiber device. Microporous and Mesoporous Materials, 2020, 305, 110396.	2.2	24
167	Nonlinear optical metal-organic frameworks for ratiometric temperature sensing in physiological range. Chinese Chemical Letters, 2021, 32, 1511-1514.	4.8	24
168	Assembly and tunable luminescence of lanthanide-organic frameworks constructed from 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylate ligand. Journal of Alloys and Compounds, 2013, 551, 616-620.	2.8	23
169	A NbO type microporous metal–organic framework constructed from a naphthalene derived ligand for CH ₄ and C ₂ H ₂ storage at room temperature. RSC Advances, 2014, 4, 49457-49461.	1.7	23
170	Microporous metal-organic frameworks with suitable pore spaces forÂacetylene storage and purification. Microporous and Mesoporous Materials, 2015, 215, 109-115.	2.2	23
171	Ratiometric near infrared luminescent thermometer based on lanthanide metal-organic frameworks. Journal of Solid State Chemistry, 2016, 241, 99-104.	1.4	23
172	Tunable nonlinear optical responses based on host-guest MOF hybrid materials. Science China Materials, 2021, 64, 698-705.	3.5	23
173	Preparation and Gas Separation Properties of Metalâ€Organic Framework Membranes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 792-796.	0.6	22
174	A Biocompatible Ti-based metal-organic framework for pH responsive drug delivery. Materials Letters, 2018, 225, 142-144.	1.3	22
175	Phase separation strategy to facilely form fluorescent [Ag ₂] ²⁺ /[Ag _m] ⁿ⁺ quantum clusters in boro-alumino-silicate multiphase glasses. Physical Chemistry Chemical Physics, 2018, 20, 23942-23947.	1.3	22
176	A new metal-organic framework with suitable pore size and ttd-type topology revealing highly selective adsorption and separation of organic dyes. Journal of Solid State Chemistry, 2019, 277, 159-162.	1.4	22
177	Structural Origins of RF ₃ /NaRF ₄ Nanocrystal Precipitation from Phase-Separated SiO ₂ –Al ₂ O ₃ –RF ₃ –NaF Glasses: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2019, 123, 3024-3032.	1.2	22
178	Boosting hydrogen generation by anodic oxidation of iodide over Ni–Co(OH) ₂ nanosheet arrays. Nanoscale Advances, 2021, 3, 604-610.	2.2	22
179	Lanthanide doped fluorosilicate glass-ceramics: A review on experimental and theoretical progresses. Journal of Rare Earths, 2022, 40, 169-192.	2.5	22
180	Hybrid Nonlinear Optical Materials Containing Imidazole Chromophore through the Solâ€Gel Process. Macromolecular Rapid Communications, 2007, 28, 2019-2023.	2.0	21

#	Article	IF	CITATIONS
181	Syntheses, structures and tunable luminescence of lanthanide metal-organic frameworks based on azole-containing carboxylic acid ligand. Journal of Solid State Chemistry, 2015, 230, 287-292.	1.4	21
182	A Noninterpenetrated Metal–Organic Framework Built from an Enlarged Tetracarboxylic Acid for Small Hydrocarbon Separation. Crystal Growth and Design, 2015, 15, 4071-4074.	1.4	21
183	A Zn based anionic metal-organic framework for trace Hg2+ ion detection. Journal of Solid State Chemistry, 2018, 266, 70-73.	1.4	21
184	A luminescent terbium metal-organic framework for highly sensitive and selective detection of uric acid in aqueous media. Journal of Solid State Chemistry, 2019, 272, 55-61.	1.4	21
185	Lanthanide metal–organic frameworks with nitrogen functional sites for the highly selective and sensitive detection of NADPH. Chemical Communications, 2020, 56, 10851-10854.	2.2	21
186	Highly Efficient Encapsulation of Doxorubicin Hydrochloride in Metal–Organic Frameworks for Synergistic Chemotherapy and Chemodynamic Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 4999-5006.	2.6	21
187	Stable and wide-wavelength tunable luminescence of CsPbX ₃ nanocrystals encapsulated in metal–organic frameworks. Journal of Materials Chemistry C, 2022, 10, 5550-5558.	2.7	21
188	An amino-coordination metal–organic framework for highly selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /C ₂ H ₄ separations through the appropriate control of window sizes. RSC Advances, 2017, 7, 20795-20800.	1.7	20
189	Dye confined in metal-organic framework for two-photon fluorescent temperature sensing. Microporous and Mesoporous Materials, 2018, 268, 202-206.	2.2	20
190	A Eu/Gd-mixed metal-organic framework for ultrasensitive physiological temperature sensing. Chinese Chemical Letters, 2018, 29, 861-864.	4.8	20
191	Efficient CO ₂ /CO separation in a stable microporous hydrogen-bonded organic framework. Chemical Communications, 2021, 57, 10051-10054.	2.2	20
192	Enhanced photocatalytic activity of hydroxylated and N-doped anatase derived from amorphous hydrate. Journal of Materials Chemistry A, 2014, 2, 16242-16249.	5.2	19
193	Carbonate-assisted hydrothermal synthesis of porous, hierarchical CuO microspheres and CuO/GO for high-performance lithium-ion battery anodes. RSC Advances, 2015, 5, 85179-85186.	1.7	19
194	Electrochemical properties of SnO ₂ nanoparticles immobilized within a metal–organic framework as an anode material for lithium-ion batteries. RSC Advances, 2015, 5, 84662-84665.	1.7	19
195	A robust microporous metal–organic framework constructed from a flexible organic linker for highly selective sorption of methanol over ethanol and water. Journal of Materials Chemistry, 2012, 22, 10352.	6.7	18
196	Ultrasonic-induced disorder engineering on ZnO, ZrO ₂ , Fe ₂ O ₃ and SnO ₂ nanocrystals. RSC Advances, 2017, 7, 18785-18792.	1.7	18
197	A novel Zn-based heterocycle metal-organic framework for high C2H2/C2H4, CO2/CH4 and CO2/N2 separations. Journal of Solid State Chemistry, 2017, 255, 102-107.	1.4	17
198	Single Crystal Perovskite Microplate for Highâ€Order Multiphoton Excitation. Small Methods, 2019, 3, 1900396.	4.6	17

#	Article	IF	CITATIONS
199	Designed construction of hierarchical CoOOH@Co–FeOOH double-shelled arrays as superior water oxidation electrocatalyst. Journal of Solid State Chemistry, 2021, 294, 121867.	1.4	17
200	Immobilization of Lewis Basic Nitrogen Sites into a Chemically Stable Metal–Organic Framework for Benchmark Waterâ€Sorptionâ€Driven Heat Allocations. Advanced Science, 2022, 9, e2105556.	5.6	17
201	Synthesis and luminescence behavior of inorganic–organic hybrid materials covalently bound with pyran-containing dyes. Journal of Sol-Gel Science and Technology, 2009, 52, 362-369.	1.1	16
202	An ortho-methylated fluorescent chemosensor based on pyrromethene for highly selective and sensitive detection of Ag+ and Hg2+ ions. Materials Chemistry and Physics, 2013, 141, 591-595.	2.0	16
203	Spectral-resolving capable and integratable multilayered conductive films via an inkjet method. Journal of Materials Chemistry C, 2013, 1, 1739.	2.7	16
204	One-dimension TiO2 nanostructures: oriented attachment and application in dye-sensitized solar cell. CrystEngComm, 2014, 16, 1681.	1.3	16
205	Coordination-driven self-assembly: construction of a Fe ₃ O ₄ –graphene hybrid 3D framework and its long cycle lifetime for lithium-ion batteries. RSC Advances, 2015, 5, 40249-40257.	1.7	16
206	A Twoâ€Photon Luminescent Dye‣oaded Metal–Organic Framework for Physiological Temperature Sensing within Biological Windows. ChemPlusChem, 2017, 82, 1320-1325.	1.3	16
207	A novel NbO-type metal-organic framework for highly separation of methane from C2-hydrocarbon at room temperature. Materials Letters, 2017, 196, 112-114.	1.3	15
208	Chemical Sensing: Flexible Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes: A New Platform for H ₂ S Sensors (Small 37/2018). Small, 2018, 14, 1870168.	5.2	15
209	Solventâ€Iriggered Reversible Phase Changes in Two Manganeseâ€Based Metal–Organic Frameworks and Associated Sensing Events. Chemistry - A European Journal, 2018, 24, 13231-13237.	1.7	15
210	An inner light integrated metal-organic framework photodynamic therapy system for effective elimination of deep-seated tumor cells. Journal of Solid State Chemistry, 2019, 276, 205-209.	1.4	15
211	Switchable Twoâ€Photon Pumped Polarized Lasing Performance in Compositionâ€Graded MOFs Based Heterostructures. Advanced Optical Materials, 2020, 8, 2001089.	3.6	15
212	Micron-Scale Photodetectors Based on One-Dimensional Single-Crystalline Sb2–xSnxSe3 Microrods: Simultaneously Improving Responsivity and Extending Spectral Response Region. Journal of Physical Chemistry C, 2019, 123, 810-816.	1.5	14
213	Ca ²⁺ /Sr ²⁺ /Ba ²⁺ dependent phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass. Journal of the American Ceramic Society, 2020, 103, 5796-5807.	1.9	14
214	Dense Packing of Acetylene in a Stable and Low ost Metal–Organic Framework for Efficient C2H2/CO2 Separation. Angewandte Chemie, 0, , .	1.6	14
215	Energy transfer mechanisms among various laser dyes co-doped into gel glasses. Dyes and Pigments, 2013, 96, 242-248.	2.0	13
216	A new NbO type metal–organic framework for high acetylene and methane storage. RSC Advances, 2015, 5, 84446-84450.	1.7	13

#	Article	IF	CITATIONS
217	Enhanced photocatalytic performance and morphology evolvement of PbWO ₄ dendritic nanostructures through Eu ³⁺ doping. RSC Advances, 2016, 6, 81447-81453.	1.7	13
218	Tailoring the pore geometry and chemistry in microporous metal–organic frameworks for high methane storage working capacity. Chemical Communications, 2019, 55, 11402-11405.	2.2	13
219	Dual-band simultaneous lasing in MOFs single crystals with Fabry-Perot microcavities. Science China Chemistry, 2019, 62, 987-993.	4.2	13
220	Effect of pH values on photocatalytic properties of Bi2WO6 synthesized by hydrothermal method. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 533-536.	0.4	12
221	Stable and mechanically tunable vertical-cavity surface-emitting lasers (VCSELs) based on dye doped elastic polymeric thin films. Dyes and Pigments, 2015, 116, 114-118.	2.0	12
222	Bowl-like sulfur particles wrapped by graphene oxide as cathode material of lithium–sulfur batteries. RSC Advances, 2015, 5, 28832-28835.	1.7	12
223	Polarized Laser Switching with Giant Contrast in MOFâ€Based Mixedâ€Matrix Membrane. Advanced Science, 2022, 9, e2200953.	5.6	12
224	Refractive Index Adjustment of SiO2 Gel Glass with Zirconium Oxychloride. Journal of Sol-Gel Science and Technology, 2005, 33, 169-173.	1.1	11
225	Disorder modification and photocatalytic activity enhancement of TiO2 nanocrystals through ultrasonic hydroxylation. Journal of Alloys and Compounds, 2017, 703, 96-102.	2.8	11
226	Shape―and Sizeâ€Controlled Synthesis of Mn ₃ O ₄ Nanocrystals at Room Temperature. European Journal of Inorganic Chemistry, 2014, 2014, 3023-3029.	1.0	10
227	Low Cytotoxic Metal-Organic Frameworks as Temperature-Responsive Drug Carriers. ChemPlusChem, 2016, 81, 668-668.	1.3	10
228	Stabilization of divalent Eu ²⁺ in fluorosilicate glass-ceramics <i>via</i> lattice site substitution. RSC Advances, 2018, 8, 34536-34542.	1.7	10
229	Phase and morphology evolution of luminescent NaLnF ₄ (Ln = La to Yb) micro-crystals: understanding the ionic radii and surface energy-dependent solution growth mechanism. CrystEngComm, 2019, 21, 6652-6658.	1.3	10
230	Scalable Synthesis of NiFe‣DH/Ni ₉ S ₈ /NF Nanosheets by Twoâ€&tep Corrosion for Efficient Oxygen Electrocatalysis. ChemCatChem, 2022, 14, .	1.8	10
231	Engineering Different Reaction Centers on Hierarchical Ni/NiFe Layered Double Hydroxide Accelerating Overall Water Splitting. ACS Applied Energy Materials, 2021, 4, 9858-9865.	2.5	9
232	Self-assembled hierarchical mesoporous TiO2–C sub-microspheres from nanorods and their improved properties for lithium storage. RSC Advances, 2014, 4, 19266.	1.7	8
233	Hyper oxygen incorporation in CeF ₃ : a new intermediate-band photocatalyst for antibiotic degradation under visible/NIR light. RSC Advances, 2020, 10, 38798-38804.	1.7	8
234	Controlled dye release from a metal–organic framework: a new luminescent sensor for water. RSC Advances, 2020, 10, 2722-2726.	1.7	8

#	Article	IF	CITATIONS
235	Cu ²⁺ -Guided Construction of the Amorphous CoMoO ₃ /Cu Nanocomposite for Highly Efficient Water Electrolysis. ACS Applied Energy Materials, 2021, 4, 6740-6748.	2.5	8
236	Dipolar orientation stabilities of hybrid films for second-order nonlinear optical applications. Journal of Sol-Gel Science and Technology, 2007, 43, 329-335.	1.1	7
237	Stackable spectral-sensitive conductive films based on cyanine aggregates via an inkjet method. Dyes and Pigments, 2013, 98, 333-338.	2.0	7
238	Design and preparation of hybrid films containing three-branched chromophores for nonlinear optical applications. RSC Advances, 2016, 6, 81969-81975.	1.7	7
239	Microporous metal–organic framework with open Cu2+ functional sites and optimized pore size for C2H2 storage and CH4 purification. Polyhedron, 2018, 155, 332-336.	1.0	7
240	Temperature dependent molecular fluorescence of [Agm]n+ quantum clusters stabilized by phosphate glass networks. Physical Chemistry Chemical Physics, 2020, 22, 21307-21316.	1.3	7
241	Visibleâ€NIR Photodetectors Based on Lowâ€Dimensional GeSe Microâ€Crystals: Designed Morphology and Improved Photoresponsivity. ChemPhysChem, 2020, 21, 397-405.	1.0	7
242	Fluorescence–Phosphorescence Manipulation and Atom Probe Observation of Fully Inorganic Silver Quantum Clusters: Imitating from and Behaving beyond Organic Hosts. Advanced Optical Materials, 2022, 10, 2101632.	3.6	7
243	Enhanced luminescence in multivariate metal–organic frameworks through an isolated-ligand strategy. Journal of Materials Chemistry C, 2022, 10, 10473-10479.	2.7	7
244	Amplified spontaneous emission from an infrared dye doped zirconia-organically modified silicate thin film waveguides. Journal of Sol-Gel Science and Technology, 2007, 44, 53-57.	1.1	6
245	Two-Step Self-Assembly and Lyotropic Liquid Crystal Behavior of TiO _{2} Nanorods. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	6
246	Synthesis and luminescent properties of color-tunable lanthanide complexes with 5-(pyridin-4-yl)isophthalic acid. Journal of Alloys and Compounds, 2013, 555, 22-27.	2.8	6
247	Self-curable solid-state elastic dye lasers capable of mechanical stress probing. Optics Letters, 2013, 38, 1627.	1.7	6
248	Vertical-cavity surface-emitting laser in the long-wavelength (700Ânm) region in the visible by energy transfer between organic dyes. Applied Physics B: Lasers and Optics, 2014, 115, 583-588.	1.1	6
249	Ultrasonic-induced nanocomposites with anatase@amorphous TiO2 core–shell structure and their photocatalytic activity. RSC Advances, 2016, 6, 67444-67448.	1.7	6
250	Synthesis, Structures and Luminescent Properties of Two Coordination Polymers Based on 5â€(4 arboxyphenyl)â€2, 6â€PyrÂidinedicarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 430-434.	0.6	5
251	A New Microporous Metalâ€Organic Framework for Highly Selective <scp>C₂H₂</scp> /(scp>CH ₄ and <scp>C₂H₂</scp> /(scp>/CO ₂ Separation at Room Temperature, Chinese Journal of Chemistry, 2017, 35, 1289-1293.	2.6	5
252	Structural Origins of BaF 2 /Ba 1 \hat{a} x R x F 2 + x /RF 3 Nanocrystals Formation from Phase Separated Fluoroaluminosilicate Glass: A Molecular Dynamic Simulation Study. Advanced Theory and Simulations, 2019, 2, 1900062.	1.3	5

#	Article	IF	CITATIONS
253	Nano Anatase TiO ₂ Quasi-Core–Shell Homophase Junction Induced by a Ti ³⁺ Concentration Difference for Highly Efficient Hydrogen Evolution. Inorganic Chemistry, 2020, 59, 3330-3339.	1.9	5
254	Rational Designed Metal-Organic Frameworks for Storage and Separation of Hydrogen and Methane. Current Organic Chemistry, 2018, 22, 1792-1808.	0.9	5
255	Boosting Hydrogen Evolution through the Interface Effects of Amorphous NiMoO ₄ –MoO ₂ and Crystalline Cu. ACS Omega, 2022, 7, 2244-2251.	1.6	5
256	Cationic Metal–Organic Framework-Based Mixed-Matrix Membranes for Fast Sensing and Removal of Cr2O72â^' Within Water. Frontiers in Chemistry, 2022, 10, 852402.	1.8	5
257	Sonochemical synthesis of core/Shell structured CdS/TiO2 nanocrystals composites. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 698-701.	0.4	4
258	Sensitized near-infrared luminescence from erbium ion-associated complex with IR140 dye. Dyes and Pigments, 2012, 95, 69-73.	2.0	4
259	Mechanically tunable organic vertical-cavity surface emitting lasers (VCSELs) for highly sensitive stress probing in dual-modes. Optics Express, 2015, 23, 4385.	1.7	4
260	In-situ Synthesis of Copper Phthalocyanine in Silica Xerogel Matrix. Journal of Sol-Gel Science and Technology, 2000, 18, 21-27.	1.1	3
261	Fluorescent and laser properties of pyrromethene 567 (PM567) doped into multi-precursors derived gel glasses. Journal of Sol-Gel Science and Technology, 2013, 67, 480-485.	1.1	3
262	Controllable synthesis of TiO2hierarchical and their applications in lithium ion batteries. RSC Advances, 2014, 4, 42772-42778.	1.7	3
263	Sacrificial Reagent Free Photocatalytic Oxygen Evolution over CeF ₃ /αâ€FeOOH Nanohybrid. Advanced Materials Interfaces, 2021, 8, 2101161.	1.9	3
264	An adenosine triphosphate-responsive metal–organic framework decorated with palladium nanosheets for synergistic tri-modal therapy. CrystEngComm, 2022, 24, 2558-2566.	1.3	3
265	O,N-Codoped CeF ₃ Upconversion Nanoparticles for Efficient Photocatalytic Oxygen Evolution under Visible Light. ACS Applied Nano Materials, 2022, 5, 5096-5102.	2.4	3
266	White Light: Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4795-4795.	7.8	2
267	Title is missing!. Journal of Fluorescence, 2002, 12, 377-382.	1.3	1
268	Effect of pendant group on the second-order optical nonlinearity of sol–gel films. Journal of Sol-Gel Science and Technology, 2008, 47, 252-259.	1.1	1
269	Hybrid Organic-Inorganic Solid-State Dye Laser Glasses. , 2006, , 261-298.		0
270	Hybrid inorganic-organic films with Benzaldehyde-based chromophore for electro-optic device. , 2010,		0

#	Article	IF	CITATIONS
271	A luminescent nano-scale metal-organic framework for sensing small molecules. , 2010, , .		Ο
272	Synthesis of novel SnO2 quantum cubes and their selfassembly. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 269-272.	0.4	0