Roger M Marchant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/102075/publications.pdf

Version: 2024-02-01

128 papers 15,445 citations

51
h-index

17105 122 g-index

129 all docs

129 docs citations

times ranked

129

13192 citing authors

#	Article	IF	CITATIONS
1	Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 2001, 77, 247-255.	9.6	4,185
2	Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 1996, 58, 217-227.	9.6	1,593
3	Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 2010, 87, 427-444.	3.6	1,193
4	Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology, 2001, 56, 81-87.	3.6	751
5	Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 2004, 21, 377-397.	4.2	489
6	A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal, 2001, 9, 17-23.	3.6	442
7	Microbial biosurfactants: challenges and opportunities for future exploitation. Trends in Biotechnology, 2012, 30, 558-565.	9.3	418
8	Biosurfactants: a sustainable replacement for chemical surfactants?. Biotechnology Letters, 2012, 34, 1597-1605.	2.2	358
9	Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 1996, 31, 435-442.	3.7	347
10	Rhamnolipid Biosurfactant Production by Strains of Pseudomonas aeruginosa Using Low-Cost Raw Materials. Biotechnology Progress, 2002, 18, 1277-1281.	2.6	249
11	Isolation of thermotolerant, fermentative yeasts growing at 52"½½C and producing ethanol at 45"½½C and 50"½½C. World Journal of Microbiology and Biotechnology, 1992, 8, 259-263.	3.6	196
12	Title is missing!. World Journal of Microbiology and Biotechnology, 1998, 14, 809-821.	3.6	173
13	Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Applied Microbiology and Biotechnology, 2019, 103, 3521-3535.	3.6	152
14	Effect of environmental conditions on biological decolorization of textile dyestuff by C. versicolor. Enzyme and Microbial Technology, 2000, 26, 381-387.	3.2	141
15	Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications. Trends in Biotechnology, 2018, 36, 277-289.	9.3	139
16	Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresource Technology, 2015, 198, 231-236.	9.6	127
17	Decolourisation of synthetic textile dyes byPhlebia tremellosa. FEMS Microbiology Letters, 2000, 188, 93-96.	1.8	126
18	Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria. FEMS Microbiology Letters, 2016, 363, fnv224.	1.8	125

#	Article	IF	Citations
19	Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa APO2-1. Applied Microbiology and Biotechnology, 2006, 72, 132-138.	3.6	114
20	Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environment International, 2000, 26, 75-79.	10.0	109
21	The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environmental Microbiology, 2002, 4, 595-602.	3.8	100
22	Solution Self-Assembly and Adsorption at the Airâ^'Water Interface of the Monorhamnose and Dirhamnose Rhamnolipids and Their Mixtures. Langmuir, 2010, 26, 18281-18292.	3.5	96
23	Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere, 2007, 66, 179-184.	8.2	95
24	Microbial Biosurfactants in Cosmetic and Personal Skincare Pharmaceutical Formulations. Pharmaceutics, 2020, 12, 1099.	4.5	95
25	Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 2197-2201.	1.7	93
26	Detection and Quantification of Gene Expression in Environmental Bacteriology. Applied and Environmental Microbiology, 2004, 70, 3795-3806.	3.1	90
27	Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. New Biotechnology, 2017, 36, 26-36.	4.4	89
28	Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochemical Society Transactions, 2004, 32, 214-217.	3.4	84
29	Microbial rhamnolipid production: a critical re-evaluation of published data and suggested future publication criteria. Applied Microbiology and Biotechnology, 2017, 101, 3941-3951.	3.6	84
30	Decolourisation of effluent from the textile industry by a microbial consortium. Biotechnology Letters, 1996, 18, 117-120.	2.2	81
31	Characterization and potential industrial applications of five novel, thermotolerant, fermentative, yeast strains. World Journal of Microbiology and Biotechnology, 1995, 11, 304-306.	3.6	80
32	Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environment International, 2005, 31, 191-196.	10.0	79
33	Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Applied Microbiology and Biotechnology, 2016, 100, 7945-7956.	3.6	69
34	Development of a Cradle-to-Grave Approach for Acetylated Acidic Sophorolipid Biosurfactants. ACS Sustainable Chemistry and Engineering, 2017, 5, 1186-1198.	6.7	69
35	Ultrastructural localization of polysaccharides in the wall and septum of the basidiomycete Schizophyllum commune. Experimental Mycology, 1977, 1, 69-82.	1.6	68
36	The effect of phenolic acids and molasses spent wash concentration on distillery wastewater remediation by fungi. Process Biochemistry, 1998, 33, 799-803.	3.7	67

3

#	Article	IF	CITATIONS
37	Mixing Behavior of the Biosurfactant, Rhamnolipid, with a Conventional Anionic Surfactant, Sodium Dodecyl Benzene Sulfonate. Langmuir, 2010, 26, 17958-17968.	3.5	65
38	Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport?. Applied Microbiology and Biotechnology, 2008, 78, 841-852.	3.6	64
39	Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresource Technology, 2016, 205, 1-6.	9.6	64
40	Lomasomes and plasmalemmasomes in fungi. Protoplasma, 1973, 76, 235-247.	2.1	62
41	Decolourisation and metabolism of the reactive textile dye, Remazol Black B, by an immobilized microbial consortium. Biotechnology Letters, 1996, 18, 527-530.	2.2	62
42	Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 81-97.	3.6	61
43	The degradation of n-hexadecane in soil by thermophilic geobacilli. FEMS Microbiology Ecology, 2006, 56, 44-54.	2.7	61
44	Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microbial Biotechnology, 2021, 14, 147-170.	4.2	61
45	Decolourisation of an artificial textile effluent by Phanerochaete chrysosporium. Biotechnology Letters, 1995, 17, 761-764.	2.2	59
46	Continuous wine fermentation using a psychrophilic yeast immobilized on apple cuts at different temperatures. Food Microbiology, 2002, 19, 127-134.	4.2	59
47	Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochemical Society Transactions, 2004, 32, 209-213.	3.4	59
48	Solution Self-Assembly of the Sophorolipid Biosurfactant and Its Mixture with Anionic Surfactant Sodium Dodecyl Benzene Sulfonate. Langmuir, 2011, 27, 8867-8877.	3.5	57
49	Nano-Tubular Cellulose for Bioprocess Technology Development. PLoS ONE, 2012, 7, e34350.	2.5	57
50	Decolorization of textile dyestuffs by a mixed bacterial consortium. Biotechnology Letters, 2000, 22, 1179-1181.	2.2	55
51	Improving the quality of industrially important enzymes by directed evolution. Molecular and Cellular Biochemistry, 2001, 224, 159-168.	3.1	54
52	Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora. Microbial Cell Factories, 2019, 18, 164.	4.0	51
53	Title is missing!. World Journal of Microbiology and Biotechnology, 1998, 14, 823-834.	3.6	50
54	Marine derived biosurfactants: a vast potential future resource. Biotechnology Letters, 2018, 40, 1441-1457.	2.2	48

#	Article	IF	Citations
55	Nitrogen utilization in rainbow trout fingerlings (Salmo gairdneri Richardson) fed mixed microbial biomass. Aquaculture, 1986, 54, 263-275.	3.5	47
56	Wine production using yeast immobilized on quince biocatalyst at temperatures between 30 and $0\hat{A}\hat{A}^{\circ}C$. Food Chemistry, 2003, 82, 353-360.	8.2	47
57	Adsorption of Sophorolipid Biosurfactants on Their Own and Mixed with Sodium Dodecyl Benzene Sulfonate, at the Air/Water Interface. Langmuir, 2011, 27, 8854-8866.	3.5	46
58	The isolation of thermophilic bacterial cultures capable of textile dyes decolorization. Environment International, 1997, 23, 547-551.	10.0	45
59	Rhamnolipids are conserved biosurfactants molecules: implications for their biotechnological potential. Applied Microbiology and Biotechnology, 2013, 97, 7297-7306.	3.6	45
60	Continuous Whey Fermentation Using Kefir Yeast Immobilized on Delignified Cellulosic Material. Journal of Agricultural and Food Chemistry, 2002, 50, 2543-2547.	5.2	44
61	Immobilization of yeast on dried raisin berries for use in dry white wine-making. Food Chemistry, 2004, 87, 11-15.	8.2	44
62	Hyphal ultrastructure in fruit-body primordia of the basidiomycetesSchizophyllum commune andCoprinus cinereus. Protoplasma, 1978, 95, 57-72.	2.1	43
63	Biosurfactants: promising bioactive molecules for oral-related health applications. FEMS Microbiology Letters, 2016, 363, fnw213.	1.8	43
64	Ultrastructural characterization of the basidiomycete septum of Polyporus biennis. Canadian Journal of Botany, 1972, 50, 2463-2469.	1.1	42
65	Antibacterial properties of sophorolipid-modified gold surfaces against Gram positive and Gram negative pathogens. Colloids and Surfaces B: Biointerfaces, 2017, 157, 325-334.	5.0	42
66	Global transport of thermophilic bacteria in atmospheric dust. Environmental Microbiology Reports, 2010, 2, 333-339.	2.4	40
67	Influence of Calcium Ions on Rhamnolipid and Rhamnolipid/Anionic Surfactant Adsorption and Self-Assembly. Langmuir, 2013, 29, 3912-3923.	3.5	40
68	The Potential of Bacterial Isolates for Emulsification with a Range of Hydrocarbons. Acta Biotechnologica, 2003, 23, 335-345.	0.9	39
69	Whey-cheese production using freeze-dried kefir culture as a starter. Journal of Applied Microbiology, 2007, 103, 1170-1183.	3.1	39
70	Rhamnolipids from <i>Pseudomonas aeruginosa</i> strain W10; as antibiofilm/antibiofouling products for metal protection. Journal of Basic Microbiology, 2017, 57, 364-375.	3.3	39
71	Low-temperature wine-making using yeast immobilized on pear pieces. Journal of the Science of Food and Agriculture, 2004, 84, 1615-1623.	3.5	36
72	Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules. Applied Microbiology and Biotechnology, 2010, 87, 1347-1354.	3.6	36

#	Article	IF	CITATIONS
73	Development and validation of an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantitative determination of rhamnolipid congeners. Applied Microbiology and Biotechnology, 2015, 99, 9177-9187.	3.6	34
74	Lactonic Sophorolipids Increase Tumor Burden in Apcmin+/- Mice. PLoS ONE, 2016, 11, e0156845.	2.5	33
75	The treatment of malt whiskey distillery waste using the fungus geotrichum candidum. Water Research, 1980, 14, 545-551.	11.3	32
76	Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: simplex optimisation of media supplements. Applied Microbiology and Biotechnology, 1996, 46, 187-190.	3.6	32
77	What are high-temperature bacteria doing in cold environments?. Trends in Microbiology, 2002, 10, 120-121.	7.7	31
78	An Evaluation of Soil Colonisation Potential of Selected Fungi and their Production of Ligninolytic Enzymes for Use in Soil Bioremediation Applications. Antonie Van Leeuwenhoek, 2006, 90, 147-158.	1.7	31
79	High-Temperature Wine Making Using the Thermotolerant Yeast Strain Kluyveromyces marxianus IMB3. Applied Biochemistry and Biotechnology, 2004, 112, 25-36.	2.9	30
80	Biosurfactant Use in Heavy Metal Removal from Industrial Effluents and Contaminated Sites. , 2014, , 361-370.		28
81	Quorum sensing as a potential target for increased production of rhamnolipid biosurfactant in Burkholderia thailandensis E264. Applied Microbiology and Biotechnology, 2019, 103, 6505-6517.	3.6	28
82	Selection of a substratum for composing biofilm system of a textile-effluent decolourizing bacteria. Biotechnology Letters, 1995, 17, 993-996.	2.2	27
83	Upgrading of discarded oranges through fermentation using kefir in food industry. Food Chemistry, 2008, 106, 40-49.	8.2	25
84	Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis. Applied Microbiology and Biotechnology, 2017, 101, 8443-8454.	3.6	25
85	Isolation and partial characterization of \hat{l}^2 -galactosidase activity produced by a thermotolerant strain of Kluyveromyces marxianus during growth on lactose-containing media. Enzyme and Microbial Technology, 1995, 17, 696-699.	3.2	24
86	A study of the effects of injection mode, on-capillary stacking and off-line concentration on the capillary electrophoresis limits of detection for four structural types of industrial dyes. Analytica Chimica Acta, 1997, 349, 221-229.	5.4	23
87	High growth rate and substrate exhaustion results in rapid cell death and lysis in the thermophilic bacteriumGeobacillus thermoleovorans. Biotechnology and Bioengineering, 2006, 95, 84-95.	3.3	22
88	Use of immobilized cell biocatalysts in baking. Process Biochemistry, 2007, 42, 1244-1249.	3.7	22
89	An unusual facultatively anaerobic filamentous fungus isolated under prolonged enrichment culture conditions. Mycological Research, 1994, 98, 757-760.	2.5	21
90	Biosurfactants as Anticancer Agents: Glycolipids Affect Skin Cells in a Differential Manner Dependent on Chemical Structure. Pharmaceutics, 2022, 14, 360.	4.5	21

#	Article	IF	Citations
91	Fatty acid synthesis pathway provides lipid precursors for rhamnolipid biosynthesis in Burkholderia thailandensis E264. Applied Microbiology and Biotechnology, 2018, 102, 6163-6174.	3.6	20
92	The use of a mixed culture of Geotrichum candidum, Candida krusei and Hansenula anomala for microbial protein production from whiskey distillery spent wash. European Journal of Applied Microbiology and Biotechnology, 1982, 14, 247-253.	1.3	19
93	Storage of Immobilized Yeast Cells for Use in Wine-Making at Ambient Temperature. Journal of Agricultural and Food Chemistry, 2003, 51, 654-658.	5.2	19
94	Protocols for Measuring Biosurfactant Production in Microbial Cultures. Springer Protocols, 2014, , 119-128.	0.3	19
95	Characterisation of a novel thermotolerant yeast, Kluyveromyces marxianus var marxianus : development of an ethanol fermentation process. Journal of Industrial Microbiology and Biotechnology, 1998, 20, 323-327.	3.0	18
96	The growth of Geotrichum candidum on whiskey distillery spent wash. European Journal of Applied Microbiology and Biotechnology, 1979, 6, 251-261.	1.3	17
97	Unbalanced cell-wall synthesis in chloramphenicol-grownRhodotorula glutinis. Antonie Van Leeuwenhoek, 1969, 35, 113-119.	1.7	16
98	An ultrastructural study of septal dissolution in Schizophyllum commune. Archives of Microbiology, 1974, 96, 175-182.	2.2	16
99	Comparison of reversed-polarity capillary electrophoresis and adsorptive stripping voltammetry for the detection and determination of reactive textile dyes. Analyst, The, 1995, 120, 1995.	3.5	15
100	Resolution of (RS)-Proglumide using Lipase from Candida cylindraceae. Bioorganic and Medicinal Chemistry, 2002, 10, 1471-1475.	3.0	15
101	Adsorption at the Air–Water Interface in Biosurfactant–Surfactant Mixtures: Quantitative Analysis of Adsorption in a Five-Component Mixture. Langmuir, 2017, 33, 13027-13039.	3.5	15
102	A rapid and effective method of extracting fully intact RNA from thermophilic geobacilli that is suitable for gene expression analysis. Extremophiles, 2004, 8, 73-77.	2.3	14
103	An ultrastructural study of septal development in hyphae of Polyporus biennis. Archives of Microbiology, 1978, 118, 271-277.	2.2	13
104	An ultrastructural study of 'phialospore' formation in Fusarium culmorum grown in continuous culture. Canadian Journal of Botany, 1975, 53, 1978-1987.	1.1	12
105	Degradation of naphthalene by bacterial cultures. Environment International, 1998, 24, 671-677.	10.0	12
106	Production, partial characterization, and potential diagnostic use of salicylate hydroxylase from Pseudomonas putida UUC-1. Enzyme and Microbial Technology, 1994, 16, 665-670.	3.2	11
107	Protocols for the Detection and Chemical Characterisation of Microbial Glycolipids. Springer Protocols, 2014, , 29-60.	0.3	11
108	Production of salicylate hydroxylase fromPseudomonas putida UUC-1 and its application in the construction of a biosensor. Journal of Chemical Technology and Biotechnology, 1995, 64, 331-338.	3.2	10

#	Article	IF	Citations
109	Pseudomonas aeruginosa PA80 is a cystic fibrosis isolate deficient in RhIRI quorum sensing. Scientific Reports, 2021, 11, 5729.	3.3	10
110	Effect of phytotoxic metabolites of Fusarium culmorum on barley root and root-hair development. Plant and Soil, 1981, 60, 385-397.	3.7	9
111	Composition and nutritional evaluation of microbial biomass grown on whiskey distillery spent wash. Journal of the Science of Food and Agriculture, 1983, 34, 638-646.	3.5	8
112	Bioremediation of textile industry wastewater by white-rot fungi. Studies in Environmental Science, 1997, , 711-718.	0.0	8
113	Geobacillus Activities in Soil and Oil Contamination Remediation. Soil Biology, 2011, , 259-270.	0.8	8
114	Ethanol adaptation in a thermotolerant yeast strain Kluyveromyces marxianus IMB3. Journal of Industrial Microbiology and Biotechnology, 1998, 20, 227-231.	3.0	7
115	Biodiversity of Biosurfactants and Roles in Enhancing the (Bio)availability of Hydrophobic Substrates. , 2018, , 75-103.		7
116	The macromolecular composition of Geotrichum candidum grown on whiskey distillery spent wash. European Journal of Applied Microbiology and Biotechnology, 1979, 6, 263-270.	1.3	5
117	The isolation and characterisation of a salicylate-hydroxylase-producing strain of Pseudomonas putida. Applied Microbiology and Biotechnology, 1992, 37, 378-381.	3.6	5
118	Studies on the use of a thermotolerant strain of Kluyveromyces marxianus in simultaneous saccharification and ethanol formation from cellulose. Applied Microbiology and Biotechnology, 1995, 43, 518-520.	3.6	5
119	Thermophilic bacteria in cool soils: metabolic activity and mechanisms of dispersal. , 2011, , 43-58.		4
120	Production of the enzyme dihydrofolate reductase by methotrexateâ€resistant bacteria isolated from soil. Journal of Chemical Technology and Biotechnology, 1993, 56, 35-40.	3.2	4
121	Microbial diversity in Calamita ferromagnetic sand. Environmental Microbiology Reports, 2011, 3, 483-490.	2.4	4
122	Protocols for the Isolation and Analysis of Lipopeptides and Bioemulsifiers. Springer Protocols, 2014, , 3-28.	0.3	4
123	Biodiversity of Biosurfactants and Roles in Enhancing the (Bio)availability of Hydrophobic Substrates. , 2017, , 1-29.		4
124	Dihydrofolate reductase synthesis in continuous culture using a methotrexate-resistant Escherichia coli. Enzyme and Microbial Technology, 1993, 15, 652-656.	3.2	2
125	Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiology Letters, 2000, 188, 93-96.	1.8	2
126	Achieving Commercial Applications for Microbial Biosurfactants. Advances in Biochemical Engineering/Biotechnology, 2022, , 1.	1.1	2

#	Article	IF	CITATIONS
127	Effect of phytotoxic metabolites ofFusarium culmorum on growth and physiology of barley plants. Plant and Soil, 1981, 60, 377-384.	3.7	1
128	The complete denitrification pathway of Geobacillus thermoleovorans. BMC Systems Biology, 2007, 1 , .	3.0	1