
Jean-Baptiste Thibaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10205048/publications.pdf Version: 2024-02-01

IEANI-RADTISTE THIRAUD

#	Article	IF	CITATIONS
1	Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit <i>AtKC1</i> . Plant Cell, 2022, 34, 2019-2037.	3.1	18
2	Molecular Targets of Neurotoxic Insecticides in <i>Apis mellifera</i> . European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
3	Xenopus Oocytes: A Tool to Decipher Molecular Specificity of Insecticides towards Mammalian and Insect GABA—A Receptors. Membranes, 2022, 12, 440.	1.4	4
4	Manipulations of Glutathione Metabolism Modulate IP3-Mediated Store-Operated Ca2+ Entry on Astroglioma Cell Line. Frontiers in Aging Neuroscience, 2021, 13, 785727.	1.7	3
5	Heterogeneous expression of GABA receptorâ€like subunits LCCH3 and GRD reveals functional diversity of GABA receptors in the honeybee <scp><i>Apis mellifera</i></scp> . British Journal of Pharmacology, 2020, 177, 3924-3940.	2.7	15
6	A repertoire of cationic and anionic conductances at the plasma membrane of Medicago truncatula root hairs. Plant Journal, 2019, 98, 418-433.	2.8	8
7	Multiple combinations of RDL subunits diversify the repertoire of GABA receptors in the honey bee parasite Varroa destructor. Journal of Biological Chemistry, 2018, 293, 19012-19024.	1.6	23
8	Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter. Frontiers in Plant Science, 2014, 5, 43.	1.7	75
9	CPK13, a Noncanonical Ca2+-Dependent Protein Kinase, Specifically Inhibits KAT2 and KAT1 Shaker K+ Channels and Reduces Stomatal Opening Â. Plant Physiology, 2014, 166, 314-326.	2.3	100
10	ArabidopsisÂWAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications, 2013, 4, 2625.	5.8	249
11	Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research, 2011, 21, 1116-1130.	5.7	261
12	Potassium (K ⁺) gradients serve as a mobile energy source in plant vascular tissues. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 864-869.	3.3	255
13	The K ⁺ battery-regulating Arabidopsis K ⁺ channel AKT2 is under the control of multiple post-translational steps. Plant Signaling and Behavior, 2011, 6, 558-562.	1.2	30
14	A grapevine Shaker inward K ⁺ channel activated by the calcineurin B-like calcium sensor 1ހ"protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant Journal, 2010, 61, 58-69.	2.8	135
15	Preferential KAT1-KAT2 Heteromerization Determines Inward K+ Current Properties in Arabidopsis Guard Cells. Journal of Biological Chemistry, 2010, 285, 6265-6274.	1.6	55
16	AtKC1, a conditionally targeted Shakerâ€ŧype subunit, regulates the activity of plant K ⁺ channels. Plant Journal, 2008, 53, 115-123.	2.8	107
17	Heteromeric K ⁺ channels in plants. Plant Journal, 2008, 54, 1076-1082.	2.8	57
18	Heteromerization of Arabidopsis Kv channel α-subunits. Plant Signaling and Behavior, 2008, 3, 622-625.	1.2	28

#	Article	IF	CITATIONS
19	Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5271-5276.	3.3	138
20	Molecular and Functional Characterization of a Na+-K+ Transporter from the Trk Family in the Ectomycorrhizal Fungus Hebeloma cylindrosporum. Journal of Biological Chemistry, 2007, 282, 26057-26066.	1.6	51
21	Increased Functional Diversity of Plant K+ Channels by Preferential Heteromerization of the Shaker-like Subunits AKT2 and KAT2. Journal of Biological Chemistry, 2007, 282, 486-494.	1.6	65
22	External K+modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant Journal, 2006, 46, 269-281.	2.8	138
23	Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Plant Journal, 2005, 44, 783-797.	2.8	81
24	A Unique Voltage Sensor Sensitizes the Potassium Channel AKT2 to Phosphoregulation. Journal of General Physiology, 2005, 126, 605-617.	0.9	54
25	Regulation by External K+ in a Maize Inward Shaker Channel Targets Transport Activity in the High Concentration Range. Plant Cell, 2005, 17, 1532-1548.	3.1	33
26	Plant Kin and Kout channels: Approaching the trait of opposite rectification by analyzing more than 250 KAT1–SKOR chimeras. Biochemical and Biophysical Research Communications, 2005, 332, 465-473.	1.0	33
27	Assembly of Plant Shaker-Like Kout Channels Requires Two Distinct Sites of the Channel α-Subunit. Biophysical Journal, 2004, 87, 858-872.	0.2	70
28	The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5549-5554.	3.3	388
29	Physical and Functional Interaction of the Arabidopsis K+ Channel AKT2 and Phosphatase AtPP2CA. Plant Cell, 2002, 14, 1133-1146.	3.1	186
30	Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes and Development, 2002, 16, 339-350.	2.7	195
31	A Grapevine Gene Encoding a Guard Cell K+ Channel Displays Developmental Regulation in the Grapevine Berry. Plant Physiology, 2002, 128, 564-577.	2.3	53
32	Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomycorrhizal symbiosis. Plant, Cell and Environment, 2002, 25, 75-84.	2.8	59
33	Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 374.	0.8	28
34	A plant Shaker-like K+ channel switches between two distinct gating modes resulting in either inward-rectifying or â€ĩleak' current. FEBS Letters, 2001, 505, 233-239.	1.3	69
35	Guard Cell Inward K+ Channel Activity inArabidopsis Involves Expression of the Twin Channel Subunits KAT1 and KAT2. Journal of Biological Chemistry, 2001, 276, 3215-3221.	1.6	217
36	Beticolins, Nonpeptidic, Polycyclic Molecules Produced by the Phytopathogenic Fungus Cercospora beticola, as a New Family of Ion Channel-Forming Toxins. Molecular Plant-Microbe Interactions, 2000, 13, 203-209.	1.4	31

JEAN-BAPTISTE THIBAUD

#	Article	IF	CITATIONS
37	A Shaker-like K+ Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837-851.	3.1	196
38	A Shaker-Like K + Channel with Weak Rectification Is Expressed in Both Source and Sink Phloem Tissues of Arabidopsis. Plant Cell, 2000, 12, 837.	3.1	120
39	pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Letters, 2000, 466, 351-354.	1.3	76
40	Molecular determinants of the Arabidopsis AKT1 K+ channel ionic selectivity investigated by expression in yeast of randomly mutated channels. Physiologia Plantarum, 1999, 105, 459-468.	2.6	20
41	Cluster Organization and Pore Structure of Ion Channels Formed by Beticolin 3, a Nonpeptidic Fungal Toxin. Biophysical Journal, 1999, 77, 3052-3059.	0.2	24
42	Evidence for a Multi-ion Pore Behavior in the Plant Potassium Channel KAT1. Journal of Membrane Biology, 1998, 166, 91-100.	1.0	32
43	Magnesium ions promote assembly of channelâ€like structures from beticolin 0, a nonâ€peptide fungal toxin purified from Cercospora beticola. Plant Journal, 1998, 14, 359-364.	2.8	23
44	Identification and Disruption of a Plant Shaker-like Outward Channel Involved in K+ Release into the Xylem Sap. Cell, 1998, 94, 647-655.	13.5	676
45	Functional expression of the plant K+channel KAT1 in insect cells. FEBS Letters, 1996, 380, 229-232.	1.3	42
46	Plant K+ channels: structure, activity and function. Biochemical Society Transactions, 1996, 24, 964-971.	1.6	13
47	The Baculovirus/Insect Cell System as an Alternative to Xenopus Oocytes. Journal of Biological Chemistry, 1996, 271, 22863-22870.	1.6	152
48	Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. Plant Journal, 1995, 7, 321-332.	2.8	167
49	Level of expression inXenopus oocytes affects some characteristics of a plant inward-rectifying voltage-gated K+ channel. Pflugers Archiv European Journal of Physiology, 1994, 428, 422-424.	1.3	44
50	A test for screening monoclonal antibodies to membrane proteins based on their ability to inhibit protein reconstitution into vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1150, 73-78.	1.4	2
51	Role of apoplast acidification by the H+ pump. Planta, 1992, 186, 212-8.	1.6	67
52	Effect of HCO - 3 concentration in the absorption solution on the energetic coupling of H+-cotransports in roots of Zea mays L Planta, 1989, 179, 235-241.	1.6	25
53	H ⁺ Cotransports in Corn Roots as Related to the Surface pH Shift Induced by Active H ⁺ Excretion. Plant Physiology, 1988, 88, 1469-1473.	2.3	44
54	Cell surfaces in plant-microorganism interactions. VII. Elicitor preparations from two fungal pathogens depolarize plant membranes. Plant Science, 1986, 46, 103-109.	1.7	85

#	Article	IF	CITATIONS
55	H ⁺ and K ⁺ Electrogenic Exchanges in Corn Roots. Plant Physiology, 1986, 81, 847-853.	2.3	25
56	Local Ionic Environment of Plant Membranes: Effects on Membrane Functions. Zeitschrift Für Pflanzenphysiologie, 1984, 114, 207-213.	1.4	26
57	Mechanism of nitrate uptake in corn roots. Plant Science Letters, 1981, 22, 279-289.	1.9	74