
Jason Kirby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10201282/publications.pdf Version: 2024-02-01

LASON KIDRY

#	Article	IF	CITATIONS
1	Method for extraction and analysis of per- and poly-fluoroalkyl substances in contaminated asphalt. Analytical Methods, 2022, 14, 1678-1689.	1.3	5
2	GEMAS: Geochemical distribution of Mg in agricultural soil of Europe. Journal of Geochemical Exploration, 2021, 221, 106706.	1.5	8
3	Arsenic sequestration in gold mine wastes under changing pH and experimental rewetting cycles. Applied Geochemistry, 2021, 124, 104789.	1.4	5
4	Groundwater–surface water connectivity in a chainâ€ofâ€ponds semiarid river. Hydrological Processes, 2021, 35, e14129.	1.1	8
5	Potential carcinogenic and non-carcinogenic health hazards of metal(loid)s in food grains. Environmental Science and Pollution Research, 2020, 27, 17032-17042.	2.7	15
6	GEMAS: Geochemical background and mineral potential of emerging tech-critical elements in Europe revealed from low-sampling density geochemical mapping. Applied Geochemistry, 2019, 111, 104425.	1.4	14
7	Optimisation of phosphate loading on graphene oxide–Fe(<scp>iii</scp>) composites – possibilities for engineering slow release fertilisers. New Journal of Chemistry, 2019, 43, 8580-8589.	1.4	6
8	Semiquantitative Proteomics Enables Mapping of Murine Neutrophil Dynamics following Lethal Influenza Virus Infection. Journal of Immunology, 2019, 203, 1064-1075.	0.4	2
9	Graphene oxide-Fe(III) composite containing phosphate – A novel slow release fertilizer for improved agriculture management. Journal of Cleaner Production, 2018, 185, 97-104.	4.6	73
10	GEMAS: CNS concentrations and C/N ratios in European agricultural soil. Science of the Total Environment, 2018, 627, 975-984.	3.9	22
11	Ecotoxicology of manufactured graphene oxide nanomaterials and derivation of preliminary guideline values for freshwater environments. Environmental Toxicology and Chemistry, 2018, 37, 1340-1348.	2.2	22
12	GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 2018, 88, 302-318.	1.4	143
13	Fate and dynamics of metal precipitates arising from acid drainage discharges to a river system. Chemosphere, 2018, 212, 811-820.	4.2	11
14	Potential ecological risks of metal(loid)s in riverine floodplain soils. Ecotoxicology and Environmental Safety, 2018, 164, 722-731.	2.9	15
15	Engineering the Slow Photon Effect in Photoactive Nanoporous Anodic Alumina Gradient-Index Filters for Photocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 24124-24136.	4.0	30
16	Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry. ACS Nano, 2017, 11, 10894-10902.	7.3	54
17	Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks. Environmental Science & Technology, 2017, 51, 9433-9445.	4.6	42
18	Gold Nanomaterial Uptake from Soil Is Not Increased by Arbuscular Mycorrhizal Colonization of Solanum Lycopersicum (Tomato). Nanomaterials, 2016, 6, 68.	1.9	8

Jason Kirby

#	Article	IF	CITATIONS
19	Aseptic hydroponics to assess rhamnolipid-Cd and rhamnolipid-Zn bioavailability for sunflower (Helianthus annuus): a phytoextraction mechanism study. Environmental Science and Pollution Research, 2016, 23, 21327-21335.	2.7	7
20	Fullerol as a Potential Pathway for Mineralization of Fullerene Nanoparticles in Biosolid-Amended Soils. Environmental Science and Technology Letters, 2016, 3, 7-12.	3.9	19
21	Quantifying the Sensitivity of Soil Microbial Communities to Silver Sulfide Nanoparticles Using Metagenome Sequencing. PLoS ONE, 2016, 11, e0161979.	1.1	41
22	Long-term exposure to commercially available sunscreens containing nanoparticles of TiO2 and ZnO revealed no biological impact in a hairless mouse model. Particle and Fibre Toxicology, 2015, 13, 44.	2.8	32
23	Influence of soil properties and soil leaching on the toxicity of ionic silver to plants. Environmental Toxicology and Chemistry, 2015, 34, 2503-2512.	2.2	24
24	Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil. PLoS ONE, 2015, 10, e0126275.	1.1	82
25	Distribution and speciation of bromine in mammalian tissue and fluids by X-ray fluorescence imaging and X-ray absorption spectroscopy. Metallomics, 2015, 7, 756-765.	1.0	25
26	DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene. Chemical Research in Toxicology, 2015, 28, 1023-1035.	1.7	73
27	Complex Forms of Soil Organic Phosphorus–A Major Component of Soil Phosphorus. Environmental Science & Technology, 2015, 49, 13238-13245.	4.6	97
28	Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. Journal of Hazardous Materials, 2015, 300, 788-795.	6.5	98
29	Imaging nanoparticleâ€algae interactions in three dimensions using Cytoviva microscopy. Journal of Microscopy, 2015, 257, 166-169.	0.8	24
30	Thermostability and reversibility of silver nanoparticle–protein binding. Physical Chemistry Chemical Physics, 2015, 17, 1728-1739.	1.3	30
31	The effect of soil properties on the toxicity of silver to the soil nitrification process. Environmental Toxicology and Chemistry, 2014, 33, 1170-1178.	2.2	23
32	Copper Isotope Fractionation during Equilibration with Natural and Synthetic Ligands. Environmental Science & Technology, 2014, 48, 8620-8626.	4.6	74
33	Contrasting Effects of Nanoparticle Binding on Protein Denaturation. Journal of Physical Chemistry C, 2014, 118, 22069-22078.	1.5	30
34	Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments. Accounts of Chemical Research, 2013, 46, 854-862.	7.6	520
35	Prediction of the concentration of chemical elements extracted by aqua regia in agricultural and grazing European soils using diffuse reflectance mid-infrared spectroscopy. Applied Geochemistry, 2013, 39, 33-42.	1.4	18
36	A tiered approach. Nature Nanotechnology, 2013, 8, 307-308.	15.6	12

JASON KIRBY

#	Article	IF	CITATIONS
37	Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytologist, 2013, 199, 367-378.	3.5	133
38	Behaviour of fullerenes (C60) in the terrestrial environment: Potential release from biosolids-amended soils. Journal of Hazardous Materials, 2013, 262, 496-503.	6.5	27
39	The use of diffuse reflectance mid-infrared spectroscopy for the prediction of the concentration of chemical elements estimated by X-ray fluorescence in agricultural and grazing European soils. Applied Geochemistry, 2013, 29, 135-143.	1.4	32
40	Characterization and ecological risk assessment of nanoparticulate CeO ₂ as a diesel fuel catalyst. Environmental Toxicology and Chemistry, 2013, 32, 1896-1905.	2.2	35
41	Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology, 2013, 41, 27-30.	2.0	98
42	RESPONSES OF TOMATO VAR. TINY TOM TO APPLICATION OF COPPER AND ZINC FERTILIZERS IN THREE LIMED TROPICAL PEAT SOILS OF SARAWAK. Journal of Plant Nutrition, 2013, 36, 1590-1604.	0.9	0
43	A stableâ€isotope methodology for measurement of soilâ€applied zincâ€fertilizer recovery in durum wheat (<i>Triticum durum</i>). Journal of Plant Nutrition and Soil Science, 2013, 176, 756-763.	1.1	9
44	Retention and Dissolution of Engineered Silver Nanoparticles in Natural Soils. Soil Science Society of America Journal, 2012, 76, 891-902.	1.2	165
45	Dry Soil Reduces Fertilizer Phosphorus and Zinc Diffusion but Not Bioavailability. Soil Science Society of America Journal, 2012, 76, 1301-1310.	1.2	18
46	Lead, antimony and arsenic in dissolved and colloidal fractions from an amended shooting-range soil as characterised by multi-stage tangential ultrafiltration and centrifugation. Environmental Chemistry, 2012, 9, 462.	0.7	17
47	Dissolution Kinetics of Macronutrient Fertilizers Coated with Manufactured Zinc Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 2012, 60, 3991-3998.	2.4	191
48	Selenate-Enriched Urea Granules Are a Highly Effective Fertilizer for Selenium Biofortification of Paddy Rice Grain. Journal of Agricultural and Food Chemistry, 2012, 60, 6037-6044.	2.4	65
49	The effect of soil water status on fertiliser, topsoil and subsoil phosphorus utilisation by wheat. Plant and Soil, 2012, 358, 337-348.	1.8	56
50	Influence of submergence and subsequent drainage on the partitioning and lability of added selenium fertilizers in a sulphurâ€containing Fluvisol. European Journal of Soil Science, 2012, 63, 514-522.	1.8	8
51	Arsenic mobility and impact on recovered water quality during aquifer storage and recovery using reclaimed water in a carbonate aquifer. Applied Geochemistry, 2011, 26, 1946-1955.	1.4	37
52	Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation. Earth and Planetary Science Letters, 2011, 309, 100-112.	1.8	124
53	Solubility and Batch Retention of CeO ₂ Nanoparticles in Soils. Environmental Science & Technology, 2011, 45, 2777-2782.	4.6	190
54	Cobalt Distribution and Speciation: Effect of Aging, Intermittent Submergence, In Situ Rice Roots. Journal of Environmental Quality, 2011, 40, 679-695.	1.0	12

Jason Kirby

#	Article	IF	CITATIONS
55	Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions. Science of the Total Environment, 2011, 409, 1489-1497.	3.9	168
56	Release of Dissolved Cadmium and Sulfur Nanoparticles from Oxidizing Sulfide Minerals. Soil Science Society of America Journal, 2011, 75, 842-854.	1.2	13
57	Potential Availability of Fertilizer Selenium in Field Capacity and Submerged Soils. Soil Science Society of America Journal, 2010, 74, 1589-1596.	1.2	29
58	ls rhamnolipid biosurfactant useful in cadmium phytoextraction?. Journal of Soils and Sediments, 2010, 10, 1289-1299.	1.5	18
59	Copper Lability in Soils Subjected to Intermittent Submergence. Journal of Environmental Quality, 2010, 39, 2047-2053.	1.0	12
60	Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology and Biochemistry, 2009, 41, 2214-2221.	4.2	122
61	A Predictive Model of the Effects of Aging on Cobalt Fate and Behavior in Soil. Environmental Science & Technology, 2009, 43, 135-141.	4.6	36
62	A Novel Technique to Determine Cobalt Exchangeability in Soils Using Isotope Dilution. Environmental Science & Technology, 2008, 42, 140-146.	4.6	15
63	Application of Nontraditional Stable-Isotope Systems to the Study of Sources and Fate of Metals in the Environment. Environmental Science & Technology, 2008, 42, 655-664.	4.6	115
64	Selenium Speciation and Bioavailability in Biofortified Products Using Species-Unspecific Isotope Dilution and Reverse Phase Ion Pairingâ^'Inductively Coupled Plasmaâ^'Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2008, 56, 1772-1779.	2.4	46
65	TOXICITY, BIOTRANSFORMATION, AND MODE OF ACTION OF ARSENIC IN TWO FRESHWATER MICROALGAE (CHLORELLA SP. AND MONORAPHIDIUM ARCUATUM). Environmental Toxicology and Chemistry, 2005, 24, 2630.	2.2	179
66	Arsenic Occurrence and Species in Near-Shore Macroalgae-Feeding Marine Animals. Environmental Science & Technology, 2005, 39, 5999-6005.	4.6	53
67	Increased Selenium Concentrations in Seronorm Trace Elements Serum (Level 2). Clinical Chemistry, 2004, 50, 1481-1482.	1.5	13
68	Arsenic Species Determination in Biological Tissues by HPLC - ICP - MS and HPLC - HG - ICP - MS. Australian Journal of Chemistry, 2004, 57, 957.	0.5	51
69	Measurement of Trace Elements in Marine Environmental Samples Using Solution ICPMS. Current and Future Applications. ChemInform, 2003, 34, no.	0.1	0
70	Measurement of Trace Elements in Marine Environmental Samples using Solution ICPMS. Current and Future Applications. Australian Journal of Chemistry, 2003, 56, 103.	0.5	40
71	Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2002, 17, 838-843.	1.6	82
72	Tissue accumulation and distribution of arsenic compounds in three marine fish species: relationship to trophic position. Applied Organometallic Chemistry, 2002, 16, 108-115.	1.7	89

JASON KIRBY

#	Article	IF	CITATIONS
73	Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia. Applied Organometallic Chemistry, 2002, 16, 192-201.	1.7	59
74	Selenium, Cadmium, Copper, and Zinc Concentrations in Sediments and Mullet (Mugil cephalus) from the Southern Basin of Lake Macquarie, NSW, Australia. Archives of Environmental Contamination and Toxicology, 2001, 40, 246-256.	2.1	62
75	Changes in Selenium, Copper, Cadmium, and Zinc Concentrations in Mullet (Mugil cephalus) from the Southern Basin of Lake Macquarie, Australia, in Response to Alteration of Coal-Fired Power Station Fly Ash Handling Procedures. Archives of Environmental Contamination and Toxicology, 2001, 41, 171-181.	2.1	43
76	Arsenic concentrations and speciation in the tissues and blood of sea mullet (Mugil cephalus) from Lake Macquarie NSW, Australia. Marine Chemistry, 1999, 68, 169-182.	0.9	79
77	Measurement of Total Arsenic and Arsenic Species in Seafood by Q ICP-MS. , 0, , 567-595.		0