Jean-Christophe Valmalette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10199146/publications.pdf

Version: 2024-02-01

67 1,891 23 42
papers citations h-index g-index

67 67 67 2661 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Precipitation of Self-Organized Copper Oxalate Polycrystalline Particles in the Presence of Hydroxypropylmethylcellulose (HPMC): Control of Morphology. Journal of Colloid and Interface Science, 2000, 226, 189-198.	9.4	138
2	Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: electrical and infrared properties. Journal of Physics and Chemistry of Solids, 2001, 62, 1229-1238.	4.0	124
3	Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure. Thin Solid Films, 2004, 446, 287-295.	1.8	117
4	High efficiency thermochromic VO2(R) resulting from the irreversible transformation of VO2(B). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 54, 168-173.	3 . 5	110
5	Influence of Sr-doping on structural, optical and photocatalytic properties of synthesized Ca3(PO4)2. Journal of Colloid and Interface Science, 2020, 572, 269-280.	9.4	90
6	Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels. International Journal of Hydrogen Energy, 2011, 36, 14360-14373.	7.1	84
7	Gold nanoparticle synthesis in graft copolymer micelles. Colloid and Polymer Science, 1998, 276, 853-859.	2.1	79
8	Surface enhanced Raman spectroscopy of organic molecules deposited on gold sputtered substrates. Nanotechnology, 2009, 20, 215705.	2.6	74
9	Nitrogen-doping processes of graphene by a versatile plasma-based method. Carbon, 2014, 73, 216-224.	10.3	71
10	Light- induced electron transfer and ATP synthesis in a carotene synthesizing insect. Scientific Reports, 2012, 2, 579.	3.3	62
11	Wavelength and orientation dependent capture of light by diatom frustule nanostructures. Scientific Reports, 2015, 5, 17403.	3.3	61
12	Raman scattering of linear chains of strongly coupled Ag nanoparticles on SWCNTs. Scientific Reports, 2014, 4, 5238.	3.3	53
13	Size Effects on the Stabilization of Ultrafine Zirconia Nanoparticles. Chemistry of Materials, 2002, 14, 5098-5102.	6.7	47
14	Role of surface defects and microstructure in infrared optical properties of thermochromic VO2 materials. Journal of Physics and Chemistry of Solids, 2005, 66, 63-73.	4.0	42
15	Vanadium dioxide/polymer composites: thermochromic behaviour and modelling of optical transmittance. Solar Energy Materials and Solar Cells, 1994, 33, 135-144.	6.2	39
16	Relations between microstructure, electrical percolation and corrosion in metalâ€"insulator composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 328, 67-79.	5.6	39
17	Nanocrystalline vanadium dioxide: synthesis and mid-infrared properties. Optical Materials, 2000, 15, 111-114.	3.6	38
18	Hydrothermal Growth of Tailored SnO ₂ Nanocrystals. Crystal Growth and Design, 2013, 13, 1685-1693.	3.0	36

#	Article	IF	Citations
19	Effective medium theory characterization of Au/Ag nanoalloy-porous alumina composites. Scripta Materialia, 1997, 9, 571-574.	0.5	33
20	Study of ZnO nanoparticles based hybrid nanocomposites for optoelectronic applications. Journal of Applied Physics, $2016,119,.$	2.5	32
21	Depolarization effects in tipâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 1361-1370.	2.5	30
22	Optical properties of single diatom frustules revealed by confocal microspectroscopy. Optics Letters, 2015, 40, 740.	3.3	28
23	Structural, vibrational and luminescence properties of the (1â^'x)CaWO4â^'xCdWO4 system. Journal of Solid State Chemistry, 2014, 219, 127-137.	2.9	24
24	Nano-architecture of gustatory chemosensory bristles and trachea in Drosophila wings. Scientific Reports, 2015, 5, 14198.	3.3	22
25	Hierarchical design and control of NaCe(WO ₄) ₂ crystals: structural and optical properties. CrystEngComm, 2016, 18, 6579-6593.	2.6	22
26	Structural, vibrational and photoluminescence properties of Sr(1-x)PbxMoO4 solid solution synthesized by solid state reaction. Materials Research Bulletin, 2016, 79, 121-132.	5.2	22
27	Role of thermal decomposition process in the photocatalytic or photoluminescence properties of BiPO ₄ polymorphs. Water Environment Research, 2020, 92, 1874-1887.	2.7	22
28	Dynamical Maxwell-Garnett optical modeling of nanogold-porous alumina composites: Mie and Kappa influence on absorption maxima. Scripta Materialia, 1997, 9, 575-578.	0.5	21
29	Influence of chemical substitution on the photoluminescence of $Sr(1\hat{a}^2)$ Pb WO4 solid solution. Journal of Solid State Chemistry, 2015, 227, 186-195.	2.9	21
30	Structural Disorder and Ionic Conductivity in LiVO3: A Neutron Powder Diffraction Study from 340 to 890 K. Journal of Solid State Chemistry, 2001, 156, 379-389.	2.9	20
31	Different longitudinal optical—transverse optical mode amplification in tip enhanced Raman spectroscopy of GaAs(001). Applied Physics Letters, 2010, 97, 263104.	3.3	19
32	Structural, vibrational study and UV photoluminescence properties of the system Bi _(2â^²x) Lu _(x) WO ₆ (0.1 ≠x ≠1). RSC Advances, 2015, 5, 96242-9625	5 ^{3.6}	18
33	Photoluminescence of A- and B-site Eu3+-substituted (Sr Ba1â^')2CaW Mo1â^'O6 phosphors. Journal of Solid State Chemistry, 2016, 237, 72-80.	2.9	17
34	Surface enhanced spectroscopy with gold nanostructures on silicon and glass substrates. Surface Science, 2011, 605, 1214-1218.	1.9	16
35	Photocatalytic and photoluminescence properties of CePO4 nanostructures prepared by coprecipitation method and thermal treatment. Optik, 2021, 238, 166683.	2.9	16
36	Self-Organized Assembly of Copper Oxalate Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 5068-5074.	3.1	14

#	Article	IF	CITATIONS
37	Photoluminescence properties of CaWO4 and CdWO4 thin films deposited on SiO2/Si substrates. Journal of Luminescence, 2019, 215, 116619.	3.1	14
38	Structural and Raman Vibrational Studies of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext> CeO </mml:mtext> <mml:mtext> xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext> Bi </mml:mtext> <mml:mtext> System. Advances in Materials Science and Engineering, 2009, 2009, 1-4.</mml:mtext></mml:msub></mml:mtext></mml:msub></mml:math>	t>22 <td>l:mtext>ntext3</td>	l:mtext>ntext3
39	Luminescent properties under X-ray excitation of Ba(1â^'x)PbxWO4 disordered solid solution. Journal of Solid State Chemistry, 2018, 258, 146-155.	2.9	13
40	Surface Interactions between Molecules and Nanocrystals in Copper Oxalate Nanostructures. Journal of Physical Chemistry C, 2010, 114, 10677-10682.	3.1	12
41	Structural modifications of nanostructured ceria CeO2,xH2O during dehydration process. Powder Technology, 2012, 215-216, 66-71.	4.2	12
42	Compositional dependence of the crystal symmetry of Eu3+-doped (Sr Ba1â^')2CaWyMo1â^'O6 phosphors. Journal of Solid State Chemistry, 2016, 233, 30-36.	2.9	12
43	Ultrafast Nanostructuring Oxidation of Crystallized Intermetallic ZrAu at 25 °C. Chemistry of Materials, 2002, 14, 2048-2054.	6.7	10
44	Microstructure modifications and modulated piezoelectric responses in PLZT/Al2O3 composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 97, 74-82.	3. 5	10
45	Combined SERS/DFT studies of push–pull chromophore self-assembled monolayers: insights into their surface orientation. Physical Chemistry Chemical Physics, 2019, 21, 25865-25871.	2.8	10
46	Photocatalytic and photoluminescent properties of a system based on SmPO4 nanostructure phase. Materials Today: Proceedings, 2020, 27, 3139-3144.	1.8	10
47	Surface Capping-Assisted Hydrothermal Growth of Gadolinium-Doped CeO ₂ Nanocrystals Dispersible in Aqueous Solutions. Langmuir, 2014, 30, 12049-12056.	3.5	9
48	Effect of morphology and temperature treatment control on the photocatalytic and photoluminescence properties of SrWO4 crystals. Photochemical and Photobiological Sciences, 2020, 19, 235-250.	2.9	9
49	Preparation and characterization of Au/ZrO2 nanoparticles obtained by oxidation of ZrXAuY alloy. Materials Science and Engineering C, 2002, 19, 79-83.	7.3	8
50	Phase Transformation, Photocatalytic and Photoluminescent Properties of BiPO4 Catalysts Prepared by Solid-State Reaction: Degradation of Rhodamine B. Minerals (Basel, Switzerland), 2021, 11, 1007.	2.0	7
51	Crystallization of nanosized silicon powder prepared by plasma-induced clustering reactions. AICHE Journal, 1997, 43, 2610-2615.	3.6	6
52	Synthesis of Zirconia-coated Gold Nanoparticles. Journal of Materials Science Letters, 1998, 17, 1665-1667.	0.5	6
53	Self-organised growth of molecular arrays at surfaces. International Journal of Nanotechnology, 2012, 9, 325.	0.2	6
54	Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling. Scientific Reports, 2014, 4, 4700.	3.3	6

#	Article	IF	CITATIONS
55	Electrospray deposition and characterization of Cu ₂ O thin films with ring-shaped 2-D network structure. Journal of the Ceramic Society of Japan, 2014, 122, 361-366.	1.1	4
56	Polarization-Sensitive Tip-Enhanced Raman Scattering. Nanoscience and Technology, 2010, , 57-88.	1.5	3
57	Neutron powder diffraction study of the crystal structures of ZrAu. Journal of Alloys and Compounds, 2004, 373, 16-27.	5.5	2
58	Evolution in Time of a Goldâ^'Zirconia Nanopowder at Room Temperature:  Nucleation Growth of Gold Nanoparticles. Chemistry of Materials, 2005, 17, 5920-5927.	6.7	2
59	Structural, vibrational and photoluminescence properties of samarium doped cobalt tungstates. Journal of Molecular Structure, 2022, 1254, 131983.	3.6	2
60	Study of the nanostructuration of ZrAu alloy near the ambient temperature by X-ray diffraction and thermal analyses. Journal of Alloys and Compounds, 2004, 373, 96-103.	5. 5	1
61	Self-Assembly and Raman Spectroscopy of Additive Coated Nanocrystals. Materials Research Society Symposia Proceedings, 2009, 1176, 21.	0.1	1
62	Surface Enhanced Spectroscopy of Organic Molecules Deposited on Nanostructured Gold Surfaces. , 2010, , .		1
63	Role of Chemical Substitution in the Photoluminescence Properties of Cerium Samarium Tungstates Ce($2\hat{a}\in (0.3)$) Ce($2\hat{a}\in $	2.0	1
64	Optical properties of gold clusters precipitated on zirconia particles. Materials Research Society Symposia Proceedings, 1997, 501, 85.	0.1	0
65	Fabrication of metal-DNA and metal-CNT hybrid nanomaterials. , 2015, , .		O
66	Synthesis, characterization and luminescent properties of Sr1-xPbxWO4solid solution (x=0, 0.5 and 1). IOP Conference Series: Materials Science and Engineering, 2017, 186, 012024.	0.6	0
67	Application of SERS to Chemicals Sensing. , 2015, , 347-370.		O