$\tilde{D}\tilde{D}^{1/2}\tilde{D}^{o}\tilde{N}\tilde{N},\tilde{D}^{o}\tilde{N}\tilde{D}_{\mu}\tilde{N}\tilde{D}_{\mu}\tilde{D}_{\mu}\tilde{D}'\tilde{D}^{3/4}\tilde{N}\tilde{D}_{\mu}\tilde{D}_{\mu}\tilde{D}_{\mu}\tilde{D}'\tilde{D}^{3/4}\tilde{N}\tilde{D}_{\mu$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10198731/publications.pdf

Version: 2024-02-01

		2682572	2550090	
5	20	2	3	
papers	citations	h-index	g-index	
5	5	5	35	
all docs	docs citations	times ranked	citing authors	

#	Article	lF	CITATIONS
1	Standardless Electrochemical Method for Mercury, Cadmium, Lead and Copper Determination in Aqueous Solution. Electroanalysis, 2007, 19, 2222-2226.	2.9	16
2	Combined standardless electrochemical method for determination of lead(II), copper(II), and cadmium(II) in aqueous solutions. Russian Journal of Applied Chemistry, 2006, 79, 1947-1951.	0.5	2
3	Determination of zinc in aqueous solutions by a combined no-standard electrochemical method with preliminary electrolytic separation of copper. Russian Journal of Applied Chemistry, 2008, 81, 420-422.	0.5	2
4	Evaluation of the efficiency of electrolysis in cells of various designs in inversion-voltammetric determination of lead. Russian Journal of Applied Chemistry, 2008, 81, 2166-2168.	0.5	0
5	Determination of zinc by atomic absorption in automobile tire rubber as a source of ecotoxicants in atmospheric air. IOP Conference Series: Earth and Environmental Science, 2021, 937, 022045.	0.3	0