
Chenxu Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1019792/publications.pdf Version: 2024-02-01

<u>Chenyli Yan</u>

#	Article	IF	CITATIONS
1	Monitoring Autophagy with Atg4B Proteaseâ€Activated Aggregationâ€Induced Emission Probe. Advanced Functional Materials, 2022, 32, 2108571.	7.8	14
2	Sequence-Activated Fluorescent Nanotheranostics for Real-Time Profiling Pancreatic Cancer. Jacs Au, 2022, 2, 246-257.	3.6	8
3	Isopropyl-naphthylamide-hydrazine as a novel fluorescent reagent for ultrasensitive determination of carbonyl species on UPLC. Microchemical Journal, 2022, 177, 107308.	2.3	0
4	"Crossbreeding―Small-Molecular Weight NIR-II Flavchromenes Endows Activatable Multiplexed In Vivo Imaging. , 2022, 4, 1493-1502.		9
5	Rational Design of Near-Infrared Cyanine-Based Fluorescent Probes for Rapid In Vivo Sensing Cysteine. ACS Applied Bio Materials, 2021, 4, 2001-2008.	2.3	27
6	Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coordination Chemistry Reviews, 2021, 427, 213556.	9.5	120
7	Harnessing α- <scp>l</scp> -fucosidase for <i>in vivo</i> cellular senescence imaging. Chemical Science, 2021, 12, 10054-10062.	3.7	25
8	Engineering molecular self-assembly of theranostic nanoprobes for dual-modal imaging-guided precise chemotherapy. Science China Chemistry, 2021, 64, 2045-2052.	4.2	10
9	Harnessing Hypoxiaâ€Dependent Cyanine Photocages for Inâ€Vivo Precision Drug Release. Angewandte Chemie, 2021, 133, 9639-9647.	1.6	3
10	Harnessing Hypoxiaâ€Dependent Cyanine Photocages for Inâ€Vivo Precision Drug Release. Angewandte Chemie - International Edition, 2021, 60, 9553-9561.	7.2	28
11	Fluorescence umpolung enables light-up sensing of N-acetyltransferases and nerve agents. Nature Communications, 2021, 12, 3869.	5.8	51
12	NAD+ supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated TÂcells. Cell Reports, 2021, 36, 109516.	2.9	50
13	Circularly Polarized Fluorescence Resonance Energy Transfer (<i>C</i> â€FRET) for Efficient Chirality Transmission within an Intermolecular System. Angewandte Chemie, 2021, 133, 24754-24762.	1.6	17
14	Circularly Polarized Fluorescence Resonance Energy Transfer (<i>C</i> â€FRET) for Efficient Chirality Transmission within an Intermolecular System. Angewandte Chemie - International Edition, 2021, 60, 24549-24557.	7.2	72
15	Engineering photo-controllable fragrance release with flash nanoprecipitation. Green Chemical Engineering, 2021, 2, 301-308.	3.3	6
16	Quantitative and systematic designing of fluorophores enables ultrasensitive distinguishing carbonyls . New Journal of Chemistry, 2021, 45, 12661-12668.	1.4	3
17	Enzyme-activatable fluorescent probes for β-galactosidase: from design to biological applications. Chemical Science, 2021, 12, 9885-9894.	3.7	60
18	Highâ€Performance Quinolineâ€Malononitrile Core as a Building Block for the Diversityâ€Oriented Synthesis of AlEgens. Angewandte Chemie, 2020, 132, 9896-9909.	1.6	15

CHENXU YAN

#	Article	lF	CITATIONS
19	Rational Design of Ratiometric Near-Infrared Aza-BODIPY-Based Fluorescent Probe for <i>in Vivo</i> Imaging of Endogenous Hydrogen Peroxide. ACS Applied Bio Materials, 2020, 3, 45-52.	2.3	42
20	Highâ€Performance Quinolineâ€Malononitrile Core as a Building Block for the Diversityâ€Oriented Synthesis of AlEgens. Angewandte Chemie - International Edition, 2020, 59, 9812-9825.	7.2	134
21	Spatioâ€Temporally Reporting Doseâ€Dependent Chemotherapy via Uniting Dualâ€Modal MRI/NIR Imaging. Angewandte Chemie - International Edition, 2020, 59, 21143-21150.	7.2	51
22	Spatioâ€Temporally Reporting Doseâ€Dependent Chemotherapy via Uniting Dualâ€Modal MRI/NIR Imaging. Angewandte Chemie, 2020, 132, 21329-21336.	1.6	6
23	De novo strategy with engineering anti-Kasha/Kasha fluorophores enables reliable ratiometric quantification of biomolecules. Nature Communications, 2020, 11, 793.	5.8	74
24	<i>In vivo</i> real-time tracking of tumor-specific biocatalysis in cascade nanotheranostics enables synergistic cancer treatment. Chemical Science, 2020, 11, 3371-3377.	3.7	17
25	A Sequential Dualâ€Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angewandte Chemie - International Edition, 2020, 59, 9059-9066.	7.2	92
26	A Sequential Dualâ€Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angewandte Chemie, 2020, 132, 9144-9151.	1.6	20
27	Photocontrollable Release with Coumarin-Based Profragrances. ACS Applied Bio Materials, 2019, 2, 4002-4009.	2.3	16
28	Molecularly near-infrared fluorescent theranostics for in vivo tracking tumor-specific chemotherapy. Chinese Chemical Letters, 2019, 30, 1849-1855.	4.8	59
29	Saponin-Based Near-Infrared Nanoparticles with Aggregation-Induced Emission Behavior: Enhancing Cell Compatibility and Permeability. ACS Applied Bio Materials, 2019, 2, 943-951.	2.3	20
30	An enzyme-activatable probe liberating AlEgens: on-site sensing and long-term tracking of β-galactosidase in ovarian cancer cells. Chemical Science, 2019, 10, 398-405.	3.7	146
31	Near-Infrared Aggregation-Induced Emission-Active Probe Enables in situ and Long-Term Tracking of Endogenous Î ² -Galactosidase Activity. Frontiers in Chemistry, 2019, 7, 291.	1.8	46
32	POSS: A Morphology-Tuning Strategy To Improve the Sensitivity and Responsiveness of Dissolved Oxygen Sensor. Industrial & Engineering Chemistry Research, 2019, 58, 7761-7768.	1.8	5
33	Highâ€Fidelity Trapping of Spatial–Temporal Mitochondria with Rational Design of Aggregationâ€Induced Emission Probes. Advanced Functional Materials, 2019, 29, 1808153.	7.8	73
34	Efficient and Stable Chemical Passivation on Perovskite Surface via Bidentate Anchoring. Advanced Energy Materials, 2019, 9, 1803573.	10.2	232
35	<i>In vivo</i> ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe. Chemical Communications, 2019, 55, 12308-12311.	2.2	48
36	Selfâ€Assembly of a Monochromophoreâ€Based Polymer Enables Unprecedented Ratiometric Tracing of Hypoxia. Advanced Materials, 2019, 31, e1805735.	11.1	57

CHENXU YAN

#	Article	IF	CITATIONS
37	Ratiometric and light-up near-infrared fluorescent DCM-based probe for real-time monitoring endogenous tyrosinase activity. Dyes and Pigments, 2019, 162, 802-807.	2.0	28
38	Rational Design of Near-Infrared Aggregation-Induced-Emission-Active Probes: In Situ Mapping of Amyloid-β Plaques with Ultrasensitivity and High-Fidelity. Journal of the American Chemical Society, 2019, 141, 3171-3177.	6.6	341
39	Molecularly precise self-assembly of theranostic nanoprobes within a single-molecular framework for <i>in vivo</i> tracking of tumor-specific chemotherapy. Chemical Science, 2018, 9, 4959-4969.	3.7	81
40	Dual-channel near-infrared fluorescent probe for real-time tracking of endogenous Î ³ -glutamyl transpeptidase activity. Chemical Communications, 2018, 54, 12393-12396.	2.2	31
41	A sequence-activated AND logic dual-channel fluorescent probe for tracking programmable drug release. Chemical Science, 2018, 9, 6176-6182.	3.7	76
42	Photocaged prodrug under NIR light-triggering with dual-channel fluorescence: in vivo real-time tracking for precise drug delivery. Science China Chemistry, 2018, 61, 1293-1300.	4.2	59
43	In Situ Ratiometric Quantitative Tracing of Intracellular Leucine Aminopeptidase Activity via an Activatable Near-Infrared Fluorescent Probe. ACS Applied Materials & Interfaces, 2016, 8, 26622-26629	4.0	85