
Jing-Wei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10197787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Cross‣inks Hydrogels for Humanâ€Motion Detection. Advanced Science, 2017, 4, 1600190.	5.6	728
2	Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 2016, 6, 1501882.	10.2	391
3	Smart Windows: Electroâ€, Thermoâ€, Mechanoâ€, Photochromics, and Beyond. Advanced Energy Materials, 2019, 9, 1902066.	10.2	383
4	Sulfidation of NiMn‣ayered Double Hydroxides/Graphene Oxide Composites toward Supercapacitor Electrodes with Enhanced Performance. Advanced Energy Materials, 2016, 6, 1501745.	10.2	254
5	Inkjet-printed all solid-state electrochromic devices based on NiO/WO ₃ nanoparticle complementary electrodes. Nanoscale, 2016, 8, 348-357.	2.8	157
6	NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn–air batteries. Nanoscale, 2017, 9, 774-780.	2.8	130
7	Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode. Advanced Energy Materials, 2017, 7, 1700180.	10.2	130
8	Molecular Level Assembly for High-Performance Flexible Electrochromic Energy-Storage Devices. ACS Energy Letters, 2020, 5, 1159-1166.	8.8	126
9	Electrochemical Supercapacitors: From Mechanism Understanding to Multifunctional Applications. Advanced Energy Materials, 2021, 11, 2003311.	10.2	109
10	The Advances of Metal Sulfides and In Situ Characterization Methods beyond Li Ion Batteries: Sodium, Potassium, and Aluminum Ion Batteries. Small Methods, 2020, 4, 1900648.	4.6	106
11	Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory. ACS Nano, 2017, 11, 1712-1718.	7.3	83
12	Electrochemical Mechanism Investigation of Cu ₂ MoS ₄ Hollow Nanospheres for Fast and Stable Sodium Ion Storage. Advanced Functional Materials, 2019, 29, 1807753.	7.8	72
13	Oneâ€Đimensional <i>Ï€</i> –d Conjugated Coordination Polymer for Electrochromic Energy Storage Device with Exceptionally High Performance. Advanced Science, 2020, 7, 1903109.	5.6	72
14	A Highâ€Performance Lithiumâ€Ion Capacitor Based on 2D Nanosheet Materials. Small, 2017, 13, 1602893.	5.2	70
15	Highly Transparent Conducting Nanopaper for Solid State Foldable Electrochromic Devices. Small, 2016, 12, 6370-6377.	5.2	66
16	Spray coated ultrathin films from aqueous tungsten molybdenum oxide nanoparticle ink for high contrast electrochromic applications. Journal of Materials Chemistry C, 2016, 4, 33-38.	2.7	63
17	Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Materials, 2018, 10, 406-416.	3.8	55
18	Zincâ€lon Hybrid Supercapacitors: Progress and Future Perspective. Batteries and Supercaps, 2021, 4, 1529-1546.	2.4	48

JING-WEI CHEN

#	Article	IF	CITATIONS
19	Ti-Doped WO ₃ synthesized by a facile wet bath method for improved electrochromism. Journal of Materials Chemistry C, 2017, 5, 9995-10000.	2.7	43
20	Encapsulation of MnS Nanocrystals into N, S-Co-doped Carbon as Anode Material for Full Cell Sodium-Ion Capacitors. Nano-Micro Letters, 2020, 12, 34.	14.4	42
21	Sulfurâ€Rich Colloidal Nickel Sulfides as Bifunctional Catalyst for Allâ€Solidâ€State, Flexible and Rechargeable Znâ€Air Batteries. ChemCatChem, 2019, 11, 1205-1213.	1.8	40
22	A Nonpresodiate Sodiumâ€ion Capacitor with High Performance. Small, 2018, 14, e1804035.	5.2	36
23	Robust Trioptical-State Electrochromic Energy Storage Device Enabled by Reversible Metal Electrodeposition. ACS Energy Letters, 2021, 6, 4328-4335.	8.8	36
24	Large-scale doping-engineering enables boron/nitrogen dual-doped porous carbon for high-performance zinc ion capacitors. Rare Metals, 2022, 41, 2505-2516.	3.6	35
25	A Tailorable Sprayâ€Assembly Strategy of Silver Nanowiresâ€Bundle Mesh for Transferable Highâ€Performance Transparent Conductor. Advanced Functional Materials, 2021, 31, .	7.8	32
26	Towards Highâ€Performance Aqueous Sodium Ion Batteries: Constructing Hollow NaTi ₂ (PO ₄) ₃ @C Nanocube Anode with Zn Metalâ€Induced Preâ€Sodiation and Deep Eutectic Electrolyte. Advanced Energy Materials, 2022, 12, .	10.2	30
27	<i>Diphylleia grayi</i> -Inspired Stretchable Hydrochromics with Large Optical Modulation in the Visible–Near-Infrared Region. ACS Applied Materials & Interfaces, 2018, 10, 37685-37693.	4.0	29
28	A Quasiâ€Solidâ€State Tristate Reversible Electrochemical Mirror Device with Enhanced Stability. Advanced Science, 2020, 7, 1903198.	5.6	26
29	High apacity Ironâ€Based Anodes for Aqueous Secondary Nickelâ^'Iron Batteries: Recent Progress and Prospects. ChemElectroChem, 2021, 8, 274-290.	1.7	23
30	Spatially Confined "Edgeâ€ŧoâ€Edge―Strategy for Achieving Compact Na ⁺ /K ⁺ Storage: Constructing Heteroâ€Ni/Ni ₃ S ₂ in Densified Carbons. Advanced Functional Materials, 2022, 32, .	7.8	23
31	A semitransparent snake-like tactile and olfactory bionic sensor with reversibly stretchable properties. NPG Asia Materials, 2017, 9, e437-e437.	3.8	22
32	Fabrication and Raman scattering behavior of novel turbostratic BN thin films. Materials Letters, 2015, 151, 130-133.	1.3	19
33	A facile route to high-purity BN nanoplates with ultraviolet cathodoluminescence emissions at room temperature. Materials Research Bulletin, 2014, 53, 190-195.	2.7	18
34	NiMn layered double hydroxides derived multiphase Mn-doped Ni sulfides with reduced graphene oxide composites as anode materials with superior cycling stability for sodium ion batteries. Materials Today Energy, 2018, 9, 74-82.	2.5	18
35	Synthesis through 3D printing: formation of 3D coordination polymers. RSC Advances, 2020, 10, 14812-14817.	1.7	17
36	Heat-Insulating Black Electrochromic Device Enabled by Reversible Nickel–Copper Electrodeposition. ACS Applied Materials & Interfaces, 2022, 14, 20237-20246.	4.0	17

JING-WEI CHEN

#	Article	IF	CITATIONS
37	Flexible electrochromic fiber with rapid color switching and high optical modulation. Nano Research, 2023, 16, 5473-5479.	5.8	16
38	Scalable Inkjet Printing of Electrochromic Smart Windows for Building Energy Modulation. Advanced Energy and Sustainability Research, 2022, 3, 2100172.	2.8	14
39	Pseudocapacitive and dual-functional electrochromic Zn batteries. Materials Today Energy, 2022, 27, 101048.	2.5	14
40	Smart Windows: Smart Windows: Electroâ€; Thermoâ€; Mechanoâ€; Photochromics, and Beyond (Adv. Energy)	Tj Etoq0 (10:2) 0 rgBT /Ove
41	Coupling core–shell Bi@Void@TiO ₂ heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability. Journal of Materials Chemistry A, 2022, 10, 12908-12920.	5.2	12
42	Tri-rutile layered niobium-molybdates for all solid-state symmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 20141-20150.	5.2	6
43	Vanadium Oxide Nanosheets for Flexible Dendriteâ€Free Hybrid Aluminiumâ€Lithiumâ€Ion Batteries with Excellent Cycling Performance. Batteries and Supercaps, 2019, 2, 205-212.	2.4	5
44	Recent Advances and Prospects of Fiberâ€Shaped Rechargeable Aqueous Alkaline Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100060.	2.8	5
45	Strain Sensors: Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Crossâ€Links Hydrogels for Humanâ€Motion Detection (Adv. Sci. 2/2017). Advanced Science, 2017, 4, .	5.6	4
46	Zincâ€lon Hybrid Supercapacitors: Progress and Future Perspective. Batteries and Supercaps, 2021, 4, 1527-1528.	2.4	4
47	Supercapacitors: Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors (Adv. Energy Mater. 4/2016). Advanced Energy Materials, 2016, 6, n/a-n/a.	10.2	2
48	Capacitors: A Highâ€Performance Lithiumâ€lon Capacitor Based on 2D Nanosheet Materials (Small 6/2017). Small, 2017, 13, .	5.2	2
49	Reversible Electrochemical Mirror Devices: A Quasiâ€Solidâ€State Tristate Reversible Electrochemical Mirror Device with Enhanced Stability (Adv. Sci. 13/2020). Advanced Science, 2020, 7, 2070073.	5.6	2
50	High apacity Ironâ€Based Anodes for Aqueous Secondary Nickel–Iron Batteries: Recent Progress and Prospects. ChemElectroChem, 2021, 8, 273-273.	1.7	2
51	Vanadium Oxide Nanosheets for Flexible Dendriteâ€Free Hybrid Aluminiumâ€Lithiumâ€Ion Batteries with Excellent Cycling Performance. Batteries and Supercaps, 2019, 2, 180-180.	2.4	1
52	Foldable Electronic Devices: Highly Transparent Conducting Nanopaper for Solid State Foldable Electrochromic Devices (Small 46/2016). Small, 2016, 12, 6418-6418.	5.2	0
53	Batteries. , 2021, , 79-141.		0