Uskov E I

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10195966/publications.pdf

Version: 2024-02-01

2258059 1720034 23 51 3 7 citations h-index g-index papers 23 23 23 36 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	High-temperature embrittlement of tungsten. Strength of Materials, 1983, 15, 667-672.	0.5	19
2	Recrystallization and embrittlement of sintered tungsten. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1982, 21, 408-411.	0.1	9
3	Methodological aspects of studying the fracture toughness of tungsten. Report No. 2. Strength of Materials, 1984, 16, 943-949.	0.5	6
4	Fractographic features of failure of tungsten cermet in the temperature range 20?2000�C. Strength of Materials, 1982, 14, 1262-1265.	0.5	3
5	The strength and deformation of graphites under conditions of a cyclic variation in load and temperature. Strength of Materials, 1978, 10, 413-417.	0.5	2
6	Features of the failure of powder metallurgy tungsten at different temperatures in vacuum. Strength of Materials, 1981, 13, 86-89.	0.5	2
7	Methodological aspects of creep prediction for heat-resistant steels and alloys. Part 2. Prediction over wide ranges of temperatures and loading times. Strength of Materials, 2007, 39, 372-380.	0.5	2
8	Some patterns of deformation and failure of refractory alloys of molybdenum, niobium and tantalum during a programmed change of temperature. Strength of Materials, 1972, 4, 1427-1432.	0.5	1
9	Thermocyclic strength of a molybdenum single crystal at high temperatures. Strength of Materials, 1975, 7, 1473-1476.	0.5	1
10	Effect of some structural parameters on the high-temperature fracture toughness of tungsten. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1984, 23, 479-482.	0.1	1
11	Crack resistance of tungsten hardened by dispersed refractory oxides. Soviet Materials Science, 1985, 20, 521-523.	0.0	1
12	Effect of the temperature on the crack resistance and fracture micromechanisms of tungsten-copper pseudoalloy. Strength of Materials, 1988, 20, 37-44.	0.5	1
13	Deformation-Strength Relationships in Short-Term Tension of Heat-Resistant Materials. Strength of Materials, 2003, 35, 484-489.	0.5	1
14	High-temperature creep data generation in elaboration of regulatory documents for metal-intensive power equipment. Strength of Materials, 2012, 44, 494-501.	0.5	1
15	The problem of preparation of creep rupture strength data during the formulation of regulatory documents for metal-intensive power equipment. Strength of Materials, 2012, 44, 359-368.	0.5	1
16	An investigation of the influence of the kinetics of recrystallization processes on the long time strength of VM-1 alloy under conditions of thermocycling. Strength of Materials, 1974, 6, 1348-1352.	0.5	0
17	Installations for studying mechanical properties of materials under alternating force and thermal loadings. Strength of Materials, 1976, 8, 1371-1375.	0.5	O
18	High-temperature strength and ductility of single-crystal molybdenum in routine tests. Strength of Materials, 1976, 8, 1160-1164.	0.5	0

Uskov E I

#	Article	IF	CITATIONS
19	Influence of temperature and heat treatment on the crack resistance of powder metallurgy tungsten. Soviet Materials Science, 1983, 19, 48-51.	0.0	0
20	Methodological problems in studying the fracture toughness of tungsten. Report No. 1. Strength of Materials, 1984, 16, 818-824.	0.5	0
21	Effect of temperature on the crack resistance of a molybdenum alloy with 30% tungsten. Strength of Materials, 1985, 17, 1686-1691.	0.5	O
22	Questions of optimization of the crack resistance of tungsten. Strength of Materials, 1986, 18, 729-733.	0.5	0
23	Crack resistance and micromechanisms of failure of dispersion-hardened molybdenum alloy with 30% tungsten. Strength of Materials, 1988, 20, 156-158.	0.5	0