Christophe Coupeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10194845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An atomic-scale insight into Ni3Al slip traces. Materialia, 2020, 9, 100563.	1.3	1
2	Low temperature atomic-scale observations of slip traces in niobium. Scripta Materialia, 2020, 183, 81-85.	2.6	10
3	Influence of interface steps on the buckle delamination of thin films. Journal of the Mechanics and Physics of Solids, 2019, 132, 103698.	2.3	6
4	Kinetics of anticrossing between slip traces and vicinal steps on crystal surfaces. Acta Materialia, 2019, 175, 206-213.	3.8	3
5	How slip traces modify the Au(111) reconstruction. Physical Review B, 2019, 99, .	1.1	2
6	Atomic-scale insight into non-crystallographic slip traces in body-centred cubic crystals. Scripta Materialia, 2019, 162, 292-295.	2.6	14
7	Interacting straight-sided buckles: An enhanced attraction by substrate elasticity. Journal of the Mechanics and Physics of Solids, 2019, 124, 526-535.	2.3	13
8	Slip trace-induced terrace erosion. Applied Surface Science, 2019, 466, 454-458.	3.1	0
9	Effect of surface on the dissociation of perfect dislocations into Shockley partials describing the herringbone Au(1Â1Â1) surface reconstruction. Philosophical Magazine, 2018, 98, 1594-1607.	0.7	2
10	Buckle depression as a signature of Young's modulus mismatch between a film and its substrate. Thin Solid Films, 2018, 645, 379-382.	0.8	14
11	How soft substrates affect the buckling delamination of thin films through crack front sink-in. Applied Physics Letters, 2017, 110, .	1.5	18
12	Influence of terrace widths on Au(111) reconstruction. Physical Review B, 2017, 96, .	1.1	12
13	Slip-trace-induced vicinal step destabilization. Physical Review B, 2016, 93, .	1.1	4
14	Effect of plasticity and atmospheric pressure on the formation of donut- and croissantlike buckles. Physical Review E, 2015, 91, 012410.	0.8	16
15	Modeling of Young׳s modulus variations with temperature of Ni and oxidized Ni using a magneto-mechanical approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 633, 76-91.	2.6	23
16	Atomic reconstruction of niobium (111) surfaces. Surface Science, 2015, 632, 60-63.	0.8	6
17	Redeposition of a straight-sided buckle under pressure. Physical Review E, 2014, 89, 032410.	0.8	5
18	What can be learnt on the yield stress anomaly of Ni3Al using AFM observations. Intermetallics, 2014, 50, 86-93.	1.8	9

CHRISTOPHE COUPEAU

#	Article	IF	CITATIONS
19	An experimental UHV AFM-STM device for characterizing surface nanostructures under stress/strain at variable temperature. Review of Scientific Instruments, 2013, 84, 105117.	0.6	14
20	Buckling-induced dislocation emission in thin films on substrates. International Journal of Solids and Structures, 2013, 50, 3717-3722.	1.3	7
21	Interface step-induced thin-film delamination and buckling. Acta Materialia, 2013, 61, 4429-4438.	3.8	11
22	Effect of oxidation on the elastic properties of ferromagnetic metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 571, 92-94.	2.6	5
23	Bow–tie slip traces in Fe80Al20 single crystals deformed at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 258-261.	2.6	4
24	Kinetic evolution of blistering in hydrogen-implanted silicon. Applied Physics Letters, 2013, 103, .	1.5	13
25	Quantitative numerical method for analysing slip traces observed by AFM. Surface Topography: Metrology and Properties, 2013, 1, 015002.	0.9	3
26	Validation by asymptotic development of the empirical bulge test formula. Surface and Coatings Technology, 2012, 207, 218-220.	2.2	1
27	Gliding at interface during thin film buckling: A coupled atomistic/elastic approach. Acta Materialia, 2012, 60, 1259-1267.	3.8	15
28	Atypical "boomerang―slip traces in [001] niobium single crystals deformed at room temperature. Scripta Materialia, 2012, 66, 475-478.	2.6	10
29	Effects of sliding on interface delamination during thin film buckling. Scripta Materialia, 2012, 67, 157-160.	2.6	15
30	About the internal pressure in cavities derived from implantation-induced blistering in semi-conductors. Journal of Applied Physics, 2011, 110, .	1.1	9
31	A new peeling mechanism of blisters involving surface diffusion. Scripta Materialia, 2011, 65, 672-674.	2.6	1
32	Understanding substrate plasticity and buckling of thin films. , 2011, , 317-339.		0
33	Evidence of vacuum between buckled films and their substrates. Thin Solid Films, 2010, 518, 5233-5236.	0.8	12
34	Buckling of Stressed and Pressurized Thin Films on Substrates. Journal of Applied Mechanics, Transactions ASME, 2010, 77, .	1.1	9
35	A stress relaxation mechanism through buckling-induced dislocations in thin films. Journal of Applied Physics, 2010, 108, 026104.	1.1	4
36	Effect of pressure and stress on blistering induced by hydrogen implantation in silicon. Europhysics Letters, 2010, 92, 16001.	0.7	14

#	Article	IF	CITATIONS
37	Buckling patterns of gold thin films on silicon substrates: Formation of superimposed blisters. Europhysics Letters, 2009, 86, 54002.	0.7	7
38	Investigating the secondary buckling of thin films with a model based on elastic rods with hinges. Journal of Mechanics of Materials and Structures, 2009, 4, 121-138.	0.4	3
39	From thin film and coating buckling structures to mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 617-619.	2.6	21
40	Quantitative atomic force microscopy analysis of slip traces in Ni3Al yield stress anomaly. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 87-90.	2.6	15
41	Molecular dynamics simulations of buckling-induced plasticity. Applied Physics Letters, 2008, 93, .	1.5	16
42	Buckling and cracking of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mtext>Y</mml:mtext><mml:mn>2</mml:mn></mml:msub><u films at grain boundaries. Physical Review B, 2008, 78, .</u </mml:mrow></mml:math>	mm i: :::sub	> <monl:mtext:< td=""></monl:mtext:<>
43	How do nanometer scale dislocation traces evolve in the stress anomaly domain of intermetallics?. Applied Physics Letters, 2007, 90, 171914.	1.5	7
44	Plastic Folding of Buckling Structures. Physical Review Letters, 2007, 99, 046101.	2.9	45
45	Short range order heterogeneity on plastic mechanisms in γ-phase nickel-based superalloys. Philosophical Magazine, 2007, 87, 3893-3904.	0.7	4
46	Post-flambage unilatéral des films minces sur substrat. European Journal of Computational Mechanics, 2007, 16, 941-955.	0.6	0
47	Effect of the dislocation emergence on the mechanical behavior of coated materials: Elastic energy relaxation or adhesion modification. Surface and Coatings Technology, 2007, 202, 1094-1097.	2.2	3
48	Thin film delamination study duringin situcompressive testing by scanning micro X-ray diffraction. Acta Crystallographica Section A: Foundations and Advances, 2007, 63, s235-s235.	0.3	0
49	Nanoindentation-induced deformation in Al–Pd–Mn single quasicrystals. Applied Physics Letters, 2006, 88, 073103.	1.5	6
50	How Does Crystalline Substrate Plasticity Modify Thin Film Buckling?. Physical Review Letters, 2006, 97, 096101.	2.9	29
51	Stability diagram of unilateral buckling patterns of strip-delaminated films. Physical Review E, 2006, 74, 066601.	0.8	58
52	Mechanical behaviour of metallic thin films on polymeric substrates and the effect of ion beam assistance on crack propagation. Acta Materialia, 2005, 53, 411-417.	3.8	32
53	Effect of substrate compliance on the global unilateral post-buckling of coatings: AFM observations and finite element calculations. Acta Materialia, 2005, 53, 441-447.	3.8	75
54	Stress heterogeneity of thermally grown polycrystalline nickel oxide layers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 395, 22-26.	2.6	5

CHRISTOPHE COUPEAU

#	Article	IF	CITATIONS
55	Snapthrough occurring in the postbuckling of thin films. Applied Physics Letters, 2005, 86, 081905.	1.5	13
56	Strain mapping on gold thin film buckling and silicon blistering. Materials Research Society Symposia Proceedings, 2005, 875, 1.	0.1	2
57	Activation of dislocation sources in Î ³ -phases of nickel-base superalloys studied by use of atomic-force microscopy and transmission electron microscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 103-108.	2.6	10
58	Experimental study of Ni3Al slip traces by atomic force microscopy: an evidence of mobile dislocation exhaustion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 926-930.	2.6	8
59	Evidence of plastic damage in thin films around buckling structures. Thin Solid Films, 2004, 469-470, 221-226.	0.8	18
60	Buckling and post-buckling of stressed straight-sided wrinkles: experimental AFM observations of bubbles formation and finite element simulations. Acta Materialia, 2004, 52, 3959-3966.	3.8	45
61	Ion irradiation effects on the mechanical stability of compressed metallic thin films. Applied Physics Letters, 2004, 84, 894-896.	1.5	10
62	Indentation-induced twinning in LaAlO3 single crystals: An atomic force microscopy study. Scripta Materialia, 2003, 49, 903-908.	2.6	22
63	Damage mode tensile testing of thin gold films on polyimide substrates by X-ray diffraction and atomic force microscopy. Thin Solid Films, 2003, 424, 267-273.	0.8	41
64	Atomic force microscopy observations of successive damaging mechanisms of thin films on substrates under tensile stress. Thin Solid Films, 2003, 429, 267-272.	0.8	22
65	Buckling pattern with rings: Evidence of plastic damage in thin films. Philosophical Magazine Letters, 2003, 83, 453-457.	0.5	3
66	Buckling phenomena in Y2O3 thin films on GaAs substrates. Applied Physics Letters, 2003, 82, 2056-2058.	1.5	9
67	Damaging of a soft substrate by cracks propagation through its hard coating: AFM observations and finite element simulation. EPJ Applied Physics, 2003, 22, 15-19.	0.3	3
68	Comportement mécanique des matériaux revêtus sous contrainteÂ: phénomènes de décohésion interfaciale, cloquage et fissuration. European Physical Journal Special Topics, 2003, 106, 121-130.	0.2	0
69	Atomic force microscopy investigation of buckling patterns of nickel thin films on polycarbonate substrates. Philosophical Magazine Letters, 2002, 82, 477-482.	0.5	7
70	Damaging of a Soft Polymeric Substrate by Crack Propagation Through Its Hard Coating. Materials Research Society Symposia Proceedings, 2002, 734, 271.	0.1	0
71	Buckling of Thin Films on Substrates: From Straight-Sided Wrinkles to Both Worm-Like and Varicose Structures. Materials Research Society Symposia Proceedings, 2002, 749, 1.	0.1	0
72	Stability of wrinkling patterns: from straight-sided to worm-like structures. EPJ Applied Physics, 2002, 17, 173-178.	0.3	6

#	Article	IF	CITATIONS
73	Atomic force microscopy study of the morphological shape of thin film buckling. Thin Solid Films, 2002, 406, 190-194.	0.8	45
74	Characterization of thin film elastic properties using X-ray diffraction and mechanical methods: application to polycrystalline stainless steel. Thin Solid Films, 2001, 398-399, 496-500.	0.8	31
75	Atomic force microscopy observations of in situ deformed materials: application to single crystals and thin films on substrates. Journal of Microscopy, 2001, 203, 99-107.	0.8	9
76	Experimental investigation of the instability of buckling patterns: from straight-sided to wormlike structures. Scripta Materialia, 2001, 44, 2623-2627.	2.6	39
77	Interactive study of straight-sided buckling patterns in thin films under compressive stress. EPJ Applied Physics, 2000, 10, 3-7.	0.3	16
78	Atomic force microscopy of dislocation locking effects at gold film LiF substrate interface. Scripta Materialia, 2000, 43, 187-192.	2.6	6
79	On the Young's modulus of 304 L stainless steel thin films. Materials Characterization, 2000, 45, 33-37.	1.9	12
80	Role of dislocation structure on nanomechanical properties. Journal of Materials Science Letters, 2000, 19, 259-262.	0.5	3
81	Atomic force microscopy analysis of buckling phenomena in metallic thin films on substrates. Journal of Materials Science Letters, 2000, 19, 353-355.	0.5	11
82	Worm-like delamination patterns of thin stainless steel films on polycarbonate substrates. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 2559-2565.	0.8	33
83	Mechanical behaviour of thin films on substrates : Debonding and buckling. European Physical Journal Special Topics, 2000, 10, Pr6-47-Pr6-52.	0.2	Ο
84	Pop-in phenomenon during nanoindentation in MgO. EPJ Applied Physics, 1999, 8, 123-128.	0.3	27
85	Nano-undulations of nickel thin films on a substrate under compressive stress. Philosophical Magazine Letters, 1999, 79, 497-501.	0.5	2
86	Atomic force microscopy of in situ deformed nickel thin films. Thin Solid Films, 1999, 353, 194-200.	0.8	50
87	Quantitative analysis of surface effects of plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 271, 242-250.	2.6	16
88	Slip line analysis in Ni3Al by atomic force microscopy. Scripta Materialia, 1999, 41, 945-950.	2.6	14
89	Atomic force microscopy observations of debonding in 304 L stainless steel thin films. Materials Letters, 1999, 41, 181-185.	1.3	7
90	On the relation between Frank-Read source nature and fine slip line structure. EPJ Applied Physics, 1999, 5, 231-236.	0.3	4

6

CHRISTOPHE COUPEAU

#	Article	IF	CITATIONS
91	Atomic force microscopy of twin formation in low-stacking fault CuAl alloy. EPJ Applied Physics, 1999, 6, 1-6.	0.3	15
92	Plasticity study of deformed materials by in situ atomic force microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 1964.	1.6	36
93	In Situ Plastic Deformation Study by AFM: Application to Ni Based Alloy Mc2 Phase γ. Materials Research Society Symposia Proceedings, 1998, 522, 107.	0.1	0
94	Statistical analysis ofin-situslip lines by atomic force microscopy observations. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 76, 1139-1152.	0.8	10
95	Nanometer undulations on CaF2 cleaved surfaces observed by Atomic Force Microscopy. Scripta Materialia, 1996, 34, 1673-1678.	2.6	4
96	Atomic force microscopy of in situ deformed LiF. Scripta Metallurgica Et Materialia, 1995, 32, 1573-1578.	1.0	23
97	A New Insight in the Plasticity of Ni ₃ Al Intermetallic Compounds Using AFM Observations. Key Engineering Materials, 0, 465, 403-406.	0.4	1
98	Contribution of AFM Observations to the Understanding of Ni ₃ Al Yield Stress Anomaly. Applied Mechanics and Materials, 0, 61, 71-77.	0.2	0
99	Delamination of metal thin films on polymer substrates: From straight-sided blisters to varicose structures. , 0, .		1