
Antonello Pasini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1019482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial neural networks for small dataset analysis. Journal of Thoracic Disease, 2015, 7, 953-60.	0.6	130
2	Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: the Basilicata region, southern Italy. International Journal of Climatology, 2013, 33, 3229-3248.	1.5	85
3	A neural network model for visibility nowcasting from surface observations: Results and sensitivity to physical input variables. Journal of Geophysical Research, 2001, 106, 14951-14959.	3.3	54
4	Neural network modelling for the analysis of forcings/temperatures relationships at different scales in the climate system. Ecological Modelling, 2006, 191, 58-67.	1.2	53
5	An overview of the use of artificial neural networks in lung cancer research. Journal of Thoracic Disease, 2017, 9, 924-931.	0.6	50
6	A unified view of Kolmogorov and Lorenz systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 275, 435-446.	0.9	45
7	A contribution to attribution of recent global warming by outâ€ofâ€sample Granger causality analysis. Atmospheric Science Letters, 2012, 13, 67-72.	0.8	44
8	Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. International Journal of Climatology, 2015, 35, 1964-1975.	1.5	39
9	Effect of a positive Sea Surface Temperature anomaly on a Mediterranean tornadic supercell. Scientific Reports, 2017, 7, 12828.	1.6	39
10	Energy cycle for the Lorenz attractor. Chaos, Solitons and Fractals, 2014, 64, 67-77.	2.5	34
11	Anthropogenic global warming hypothesis: testing its robustness by Granger causality analysis. Environmetrics, 2013, 24, 260-268.	0.6	31
12	Radon short range forecasting through time series preprocessing and neural network modeling. Geophysical Research Letters, 2003, 30, .	1.5	27
13	Illicit psychotropic substance contents in the air of Italy. Atmospheric Environment, 2010, 44, 2358-2363.	1.9	26
14	Monitoring of ambient BTX at Monterotondo (Rome) and indoor–outdoor evaluation in school and domestic sites. Journal of Environmental Monitoring, 2002, 4, 903-909.	2.1	25
15	Evidence of recent causal decoupling between solar radiation and global temperature. Environmental Research Letters, 2012, 7, 034020.	2.2	25
16	Attribution of Precipitation Changes on a Regional Scale by Neural Network Modeling: A Case Study. Water (Switzerland), 2010, 2, 321-332.	1.2	22
17	Analysis of spontaneous pneumothorax in the city of Cuneo: environmental correlations with meteorological and air pollutant variables. Surgery Today, 2015, 45, 625-629.	0.7	22
18	Attribution of recent temperature behaviour reassessed by a neural-network method. Scientific Reports, 2017, 7, 17681.	1.6	20

ANTONELLO PASINI

#	Article	IF	CITATIONS
19	Dissipation in Lie–Poisson systems and the Lorenz-84 model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 291, 389-396.	0.9	19
20	Influence of Circulation Patterns on Temperature Behavior at the Regional Scale: A Case Study Investigated via Neural Network Modeling. Journal of Climate, 2012, 25, 2123-2128.	1.2	19
21	Climatic attribution at the regional scale: a case study on the role of circulation patterns and external forcings. Atmospheric Science Letters, 2013, 14, 301-305.	0.8	16
22	Torsion and attractors in the Kolmogorov hydrodynamical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 241, 77-83.	0.9	14
23	Climate model pluralism beyond dynamical ensembles. Wiley Interdisciplinary Reviews: Climate Change, 2017, 8, e477.	3.6	14
24	Quantitative Interpretation of Air Radon Progeny Fluctuations in Terms of Stability Conditions in the Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2016, 160, 529-550.	1.2	11
25	Evidence for the role of the Atlantic multidecadal oscillation and the ocean heat uptake in hiatus prediction. Theoretical and Applied Climatology, 2017, 129, 873-880.	1.3	10
26	Measurements of lower Carbonyls and Hydrocarbons at Nyâ€Alesund, Svalbard. Annali Di Chimica, 2007, 97, 1027-1037.	0.6	9
27	Oscillating forcings and new regimes in the Lorenz system: a four-lobe attractor. Nonlinear Processes in Geophysics, 2012, 19, 315-322.	0.6	7
28	On the role of sulfates in recent global warming: a Granger causality analysis. International Journal of Climatology, 2015, 35, 3701-3706.	1.5	7
29	A multi-approach strategy in climate attribution studies: Is it possible to apply a robustness framework?. Environmental Science and Policy, 2015, 50, 191-199.	2.4	7
30	Linear and nonlinear influences of climatic changes on migration flows: a case study for the â€~Mediterranean bridge'. Environmental Research Communications, 2019, 1, 011005.	0.9	7
31	Neural Network Modeling in Climate Change Studies. , 2009, , 235-254.		7
32	On the possibility of interpreting quantum mechanics in terms of stochastic metric fluctuations. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 137, 21-28.	0.9	6
33	Neural network modelling for estimating linear and nonlinear influences of meteo-climatic variables on Sergentomyia minuta abundance using small datasets. Ecological Informatics, 2020, 56, 101055.	2.3	6
34	Climate actions in a changing world. Infrastructure Asset Management, 2018, 5, 237-241.	1.2	5
35	Energy-based predictions in Lorenz system by a unified formalism and neural network modelling. Nonlinear Processes in Geophysics, 2010, 17, 809-815.	0.6	4
36	Clarifying the Roles of Greenhouse Gases and ENSO in Recent Global Warming through Their Prediction Performance. Journal of Climate, 2014, 27, 7903-7910.	1.2	4

ANTONELLO PASINI

#	Article	IF	CITATIONS
37	Measuring persistence in time series of temperature anomalies. Theoretical and Applied Climatology, 2014, 118, 491-495.	1.3	4
38	New records of monthly temperature extremes as a signal of climate change in Italy. International Journal of Climatology, 2019, 39, 2491-2503.	1.5	4
39	A neural network ensemble downscaling system (<scp>SIBILLA</scp>) for seasonal forecasts over Italy: winter case studies. Meteorological Applications, 2017, 24, 157-166.	0.9	3
40	High time-resolved radon progeny measurements in the Arctic region (Svalbard islands, Norway): results and potentialities. Atmospheric Chemistry and Physics, 2018, 18, 6959-6969.	1.9	3
41	Perception and risk of Covid-19 and climate change: investigating analogies in a common framework. Global Sustainability, 2020, 3, .	1.6	3
42	Environmental Science Models and Artificial Intelligence. , 2009, , 3-13.		3
43	Precessions of opposite chirality for the spin vector in a Riemann-Cartan framework. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 151, 459-463.	0.9	2
44	Modeling Radon Behavior for Characterizing and Forecasting Geophysical Variables at the Atmosphere–Soil Interface. , 2014, , 213-237.		2
45	Nitrogen Oxides (NOx) in the Arctic Troposphere at Ny-Ã…lesund (Svalbard Islands): Effects of Anthropogenic Pollution Sources. Atmosphere, 2021, 12, 901.	1.0	2
46	Neural Networks for Characterization and Forecasting in the Boundary Layer via Radon Data. , 2009, , 255-268.		2
47	Arctic amplification: evidence from a cluster analysis of temperature time series for eight latitude bands. Theoretical and Applied Climatology, 2019, 137, 505-511.	1.3	1
48	The nature of the trend in global and hemispheric temperatures. International Journal of Climatology, 2021, 41, 5776.	1.5	1
49	A conceptual introduction to the Kaluza-Klein theory. European Journal of Physics, 1988, 9, 289-296.	0.3	0