
David Ordaz-Rosado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10194731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estrogens and Human Papilloma Virus Oncogenes Regulate Human <i>Ether-à-go-go-1</i> Potassium Channel Expression. Cancer Research, 2009, 69, 3300-3307.	0.9	74
2	Astemizole Synergizes Calcitriol Antiproliferative Activity by Inhibiting CYP24A1 and Upregulating VDR: A Novel Approach for Breast Cancer Therapy. PLoS ONE, 2012, 7, e45063.	2.5	55
3	Design, preparation, in vitro and in vivo evaluation of 99mTc-N2S2-Tat(49–57)-bombesin: A target-specific hybrid radiopharmaceutical. International Journal of Pharmaceutics, 2009, 375, 75-83.	5.2	54
4	Calcitriol inhibits Ether-Ã go-go potassium channel expression and cell proliferation in human breast cancer cells. Experimental Cell Research, 2010, 316, 433-442.	2.6	47
5	Synergistic Antitumorigenic Activity of Calcitriol with Curcumin or Resveratrol is Mediated by Angiogenesis Inhibition in Triple Negative Breast Cancer Xenografts. Cancers, 2019, 11, 1739.	3.7	45
6	In vivo dual targeting of the oncogenic Ether-Ã-go-go-1 potassium channel by calcitriol and astemizole results in enhanced antineoplastic effects in breast tumors. BMC Cancer, 2014, 14, 745.	2.6	42
7	Calcitriol restores antiestrogen responsiveness in estrogen receptor negative breast cancer cells: A potential new therapeutic approach. BMC Cancer, 2014, 14, 230.	2.6	41
8	Calcitriol reduces thrombospondin-1 and increases vascular endothelial growth factor in breast cancer cells: Implications for tumor angiogenesis. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 215-222.	2.5	26
9	99mTc-N2S2-Tat (49-57)-bombesin internalized in nuclei of prostate and breast cancer cells. Nuclear Medicine Communications, 2011, 32, 303-313.	1.1	24
10	Transcriptional regulation of the sodium-coupled neutral amino acid transporter (SNAT2) by 17Î2-estradiol. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11443-11448.	7.1	20
11	Calcitriol down-regulates human ether a go-go 1 potassium channel expression in cervical cancer cells. Anticancer Research, 2010, 30, 2667-72.	1.1	19
12	Synthesis and biological activity of two pregnane derivatives with a triazole or imidazole ring at C-21. Journal of Steroid Biochemistry and Molecular Biology, 2016, 159, 8-18.	2.5	15
13	Astemizole, an Inhibitor of Ether-تز1⁄2-Go-Go-1 Potassium Channel, Increases the Activity of the Tyrosine Kinase Inhibitor Gefitinib in Breast Cancer Cells. Revista De Investigacion Clinica, 2019, 71, 186-194.	0.4	15
14	Design of Fluorescent Coumarin-Hydroxamic Acid Derivatives as Inhibitors of HDACs: Synthesis, Anti-Proliferative Evaluation and Docking Studies. Molecules, 2020, 25, 5134.	3.8	14
15	Click chemistry for [99mTc(CO)3] labeling of Lys3-bombesin. Applied Radiation and Isotopes, 2010, 68, 2274-2278.	1.5	13
16	Design and biological evaluation of 99mTc-N2S2-Tat(49–57)-c(RGDyK): A hybrid radiopharmaceutical for tumors expressing α(v)β(3) integrins. Nuclear Medicine and Biology, 2013, 40, 481-487.	0.6	13
17	Chronic moderate ethanol intake differentially regulates vitamin D hydroxylases gene expression in kidneys and xenografted breast cancer cells in female mice. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 148-156.	2.5	8
18	Genomic action of permanently charged tamoxifen derivatives via estrogen receptor-α. Bioorganic and Medicinal Chemistry, 2010, 18, 5593-5601.	3.0	6

#	Article	IF	CITATIONS
19	Ligand-induced large-scale chromatin dynamics as a biosensor for the detection of estrogen receptor subtype selective ligands. Gene, 2010, 458, 37-44.	2.2	6
20	Comparison of $7\hat{l}$ ±-methyl-19-nortestosterone effectiveness alone or combined with progestins on androgen receptor mediated-transactivation. Reproduction, 2012, 143, 211-219.	2.6	6
21	A freeze-dried kit formulation for the preparation of Lys 27 (99m Tc-EDDA/HYNIC)-Exendin(9-39)/ 99m Tc-EDDA/HYNIC-Tyr 3 -Octreotide to detect benign and malignant insulinomas. Nuclear Medicine and Biology, 2015, 42, 911-916.	0.6	6
22	Exploring novel capping framework: high substituent pyridine-hydroxamic acid derivatives as potential antiproliferative agents. DARU, Journal of Pharmaceutical Sciences, 2021, 29, 291-310.	2.0	4
23	Computational Study of the Binding Modes of Diverse DPN Analogues on Estrogen Receptors (ER) and the Biological Evaluation of a New Potential Antiestrogenic Ligand. Anti-Cancer Agents in Medicinal Chemistry, 2019, 18, 1508-1520.	1.7	3
24	Ozone dosage effect on C6 cell growth, in vitro and in vivo tests: double bond index for characterization. Analytical Methods, 2014, 6, 4567-4575.	2.7	2
25	Ozone Dosage Effect on C6 Cell Growth: in Vitro and in Vivo Tests. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 1190-1196.	1.7	2
26	In vivo and in vitro estrogenic profile of 17β-amino-1,3,5(10)estratrien-3-ol. Journal of Steroid Biochemistry and Molecular Biology, 2015, 147, 40-47.	2.5	1
27	Assessment of cell death mechanisms triggered by 177 Lu-anti-CD20 in lymphoma cells. Applied Radiation and Isotopes, 2018, 138, 73-77.	1.5	1
28	Calcitriol induces estrogen receptor \hat{I}_{\pm} expression through direct transcriptional regulation and epigenetic modifications in estrogen receptor-negative breast cancer cells American Journal of Cancer Research, 2021, 11, 5951-5964.	1.4	0