Dmitry Portnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10194495/publications.pdf

Version: 2024-02-01

933447 794594 21 356 10 19 citations g-index h-index papers 21 21 21 220 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental and computational study of a flighted rotary drum cross-sectional characteristics. Powder Technology, 2022, , 117398.	4.2	1
2	Analyzing bulk density and void fraction: A. the effect of archimedes number. Powder Technology, 2021, 381, 477-487.	4.2	17
3	Analyzing bulk density and void fraction: B. Effect of moisture content and compression pressure. Powder Technology, 2021, 381, 285-297.	4.2	13
4	Theoretical and experimental analyses of energy distribution between particle and contact surface under static and dynamic loads. Powder Technology, 2021, 380, 358-367.	4.2	2
5	Simple pick-up velocity measurement procedure and defining non-settling particles using a rheometer. Powder Technology, 2021, 393, 23-30.	4.2	1
6	Mechanical characteristics of individual bio particles. Biomass Conversion and Biorefinery, 2020, 10, 1207-1220.	4.6	0
7	Simplified model for particle collision related to attrition in pneumatic conveying. Advanced Powder Technology, 2020, 31, 359-369.	4.1	5
8	Experimental investigation of the coefficient of restitution of particles colliding with surfaces in air and water. Advanced Powder Technology, 2020, 31, 3747-3759.	4.1	22
9	Melting in a vertical pipe due to asymmetric heating. Renewable Energy, 2020, 152, 179-188.	8.9	8
10	Bend pressure drop in horizontal and vertical dilute phase pneumatic conveying systems. Chemical Engineering Science, 2019, 209, 115228.	3.8	10
11	What do pneumatic conveying and hydraulic conveying have in common?. Powder Technology, 2019, 354, 485-495.	4.2	9
12	Material comminution functions of wet particles. Powder Technology, 2019, 343, 29-39.	4.2	6
13	Experimental study on particle steady state velocity distribution in horizontal dilute phase pneumatic conveying. Chemical Engineering Science, 2018, 187, 354-366.	3.8	30
14	Selection function of particles under impact loads: The effect of collision angle. Particulate Science and Technology, 2018, 36, 420-426.	2.1	10
15	Experimental study on the particle velocity development profile and acceleration length in horizontal dilute phase pneumatic conveying systems. Powder Technology, 2018, 339, 368-376.	4.2	31
16	The effect of temperature on the mechanical characteristics of individual particles. Powder Technology, 2018, 336, 393-405.	4.2	9
17	EXPERIMENTAL STUDY OF CLOSE-CONTACT MELTING IN A CYLINDRICAL ENCLOSURE., 2018,,.		1
18	Comparing particle breakage in an uniaxial confined compression test to single particle crush tests—model and experimental results. Powder Technology, 2015, 284, 344-354.	4.2	24

#	Article	IF	CITATIONS
19	Determination of elastic properties of particles using single particle compression test. Powder Technology, 2014, 268, 244-252.	4.2	45
20	Investigating the testing procedure limits for measuring particle strength distribution. Powder Technology, 2013, 237, 489-496.	4.2	29
21	Strength distribution of particles under compression. Powder Technology, 2011, 208, 215-224.	4.2	83