
Paola Chiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10194308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel glyco-conjugate vaccine against fungal pathogens. Journal of Experimental Medicine, 2005, 202, 597-606.	4.2	409
2	Protection by Anti-β-Glucan Antibodies Is Associated with Restricted β-1,3 Glucan Binding Specificity and Inhibition of Fungal Growth and Adherence. PLoS ONE, 2009, 4, e5392.	1.1	184
3	An Anti-β-Glucan Monoclonal Antibody Inhibits Growth and Capsule Formation of Cryptococcus neoformans In Vitro and Exerts Therapeutic, Anticryptococcal Activity In Vivo. Infection and Immunity, 2007, 75, 5085-5094.	1.0	152
4	Elevated aspartic proteinase secretion and experimental pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human immunodeficiency virus. Infection and Immunity, 1996, 64, 466-471.	1.0	120
5	Beta-glucan-CRM197 conjugates as candidates antifungal vaccines. Vaccine, 2010, 28, 2615-2623.	1.7	104
6	Interplay between Protective and Inhibitory Antibodies Dictates the Outcome of Experimentally Disseminated Candidiasis in Recipients of a Candida albicans Vaccine. Infection and Immunity, 2002, 70, 5462-5470.	1.0	89
7	Antiretroviral Therapy with Protease Inhibitors Has an Early, Immune Reconstitution–Independent Beneficial Effect onCandidaVirulence and Oral Candidiasis in Human Immunodeficiency Virus–Infected Subjects. Journal of Infectious Diseases, 2002, 185, 188-195.	1.9	79
8	A β-glucan-conjugate vaccine and anti-β-glucan antibodies are effective against murine vaginal candidiasis as assessed by a novel in vivo imaging technique. Vaccine, 2010, 28, 1717-1725.	1.7	74
9	The interaction of human dendritic cells with yeast and germ-tube forms ofCandida albicansleads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. Journal of Leukocyte Biology, 2004, 75, 117-126.	1.5	62
10	Deciphering the structure–immunogenicity relationship of anti- <i>Candida</i> glycoconjugate vaccines. Chemical Science, 2014, 5, 4302-4311.	3.7	55
11	Anti-β-glucan antibodies in healthy human subjects. Vaccine, 2009, 27, 513-519.	1.7	52
12	Candida albicans Yeast and Germ Tube Forms Interfere Differently with Human Monocyte Differentiation into Dendritic Cells: a Novel Dimorphism-Dependent Mechanism To Escape the Host's Immune Response. Infection and Immunity, 2004, 72, 833-843.	1.0	51
13	Deletion of the Two-Component Histidine Kinase Gene (CHK1) of Candida albicans Contributes to Enhanced Growth Inhibition and Killing by Human Neutrophils In Vitro. Infection and Immunity, 2002, 70, 985-987.	1.0	44
14	Candida albicans cell wall comprises a branched β-d-(1→6)-glucan with β-d-(1→3)-side chains. Carbohydrate Research, 2008, 343, 1050-1061.	1.1	44
15	Endogenous PGE2 promotes the induction of human Th17 responses by fungal β-glucan. Journal of Leukocyte Biology, 2010, 88, 947-954.	1.5	41
16	Defective Induction of Interleukin-12 in Human Monocytes by Germ-Tube Forms of Candida albicans. Infection and Immunity, 2000, 68, 5628-5634.	1.0	38
17	β-Glucan of <i>Candida albicans</i> cell wall causes the subversion of human monocyte differentiation into dendritic cells. Journal of Leukocyte Biology, 2007, 82, 1136-1142.	1.5	37
18	Induction of protective immunity by Legionella pneumophila flagellum in an A/J mouse model. Vaccine, 2005, 23, 4811-4820.	1.7	26

PAOLA CHIANI

#	Article	IF	CITATIONS
19	Possible participation of polymorphonuclear cells stimulated by microbial immunomodulators in the dysregulated cytokine patterns of AIDS patients. Journal of Leukocyte Biology, 1997, 62, 60-66.	1.5	25
20	Plant production of antiâ€Î²â€glucan antibodies for immunotherapy of fungal infections in humans. Plant Biotechnology Journal, 2011, 9, 776-787.	4.1	22
21	Responsiveness of human polymorphonuclear cells (PMNL) to stimulation by a mannoprotein fraction (MP-F2) of Candida albicans ; enhanced production of IL-6 and tumour necrosis factor-alpha (TNF-α) by MP-F2-stimulated PMNL from HIV-infected subjects. Clinical and Experimental Immunology, 1997, 107, 451-457.	1.1	21
22	A case of haemolytic uraemic syndrome (HUS) revealed an outbreak of Shiga toxin-2-producing Escherichia coli O26:H11 infection in a nursery, with long-lasting shedders and person-to-person transmission, Italy 2015. Journal of Medical Microbiology, 2018, 67, 775-782.	0.7	19
23	Characterization of a novel plasmid encoding F4-like fimbriae present in a Shiga-toxin producing enterotoxigenic Escherichia coli isolated during the investigation on a case of hemolytic-uremic syndrome. International Journal of Medical Microbiology, 2018, 308, 947-955.	1.5	17
24	Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses. PLoS ONE, 2015, 10, e0142531.	1.1	16
25	Freeâ€ranging red deer (<i>Cervus elaphus</i>) as carriers of potentially zoonotic Shiga toxinâ€producing <i>Escherichia coli</i> . Transboundary and Emerging Diseases, 2022, 69, 1902-1911.	1.3	14
26	The Gene <i>tia</i> , Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells. Infection and Immunity, 2017, 85, .	1.0	13
27	Investigation on the Evolution of Shiga Toxin-Converting Phages Based on Whole Genome Sequencing. Frontiers in Microbiology, 2020, 11, 1472.	1.5	13
28	Antibodies against a β-glucan-protein complex of Candida albicans and its potential as indicator of protective immunity in candidemic patients. Scientific Reports, 2017, 7, 2722.	1.6	12
29	Hyr1 Protein and βâ€Glucan Conjugates as Antiâ€ <i>Candida</i> Vaccines. Journal of Infectious Diseases, 2010, 202, 1930-1930.	1.9	11
30	A Murine, Bispecific Monoclonal Antibody Simultaneously Recognizing β-Glucan and MP65 Determinants in Candida Species. PLoS ONE, 2016, 11, e0148714.	1.1	11
31	Suckling CD1 mice as an animal model for studies of Legionella pneumophila virulence. Journal of Medical Microbiology, 1997, 46, 647-655.	0.7	10
32	Genomic Characterization of hlyF-positive Shiga Toxin–Producing Escherichia coli, Italy and the Netherlands, 2000–2019. Emerging Infectious Diseases, 2021, 27, 853-861.	2.0	10
33	Molecular characterization of diarrheagenic Escherichia coli isolates from children with diarrhea: A cross-sectional study in four provinces of Mozambique. International Journal of Infectious Diseases, 2022, 121, 190-194.	1.5	10
34	Comparative analysis of plantâ€produced, recombinant dimeric IgA against cell wall βâ€glucan of pathogenic fungi. Biotechnology and Bioengineering, 2017, 114, 2729-2738.	1.7	5
35	Population Analysis of O26 Shiga Toxin-Producing Escherichia coli Causing Hemolytic Uremic Syndrome in Italy, 1989–2020, Through Whole Genome Sequencing. Frontiers in Cellular and Infection Microbiology, 2022, 12, 842508.	1.8	4
36	Protection against Lethal Challenge by <i>Legionella pneumophila</i> in A/J Mice Following Immunization with Flagella. , 0, , 129-132.		0