Natalya Kulagina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10193800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	INVESTIGATION OF THIN FILMS MGAL2O4, DEPOSITED ON THE SI SUBSTRATES BY VACUUM THERMAL EVAPORATION. Computational Nanotechnology, 2022, 9, 125-131.	0.1	0
2	DETERMINATION OF THE DEGREE OF BLACKNESS OF THE CERAMIC COMPOSITE MATERIAL VMK-5. Computational Nanotechnology, 2021, 8, 24-28.	0.1	0
3	ZnO Films Obtained by Reactive Magnetron Sputtering: Microstructure, Electrical, and Optical Characteristics. Applied Solar Energy (English Translation of Geliotekhnika), 2020, 56, 186-191.	1.6	0
4	Optical Characteristics of Antireflection Coatings Based on Al2O3–SiO2 for Silicon Solar Cells. Journal of Applied Spectroscopy, 2020, 87, 720-723.	0.7	1
5	Determination of Parameters of Heat Treatment and Melting of Materials in a Solar Furnace. Applied Solar Energy (English Translation of Geliotekhnika), 2018, 54, 485-487.	1.6	1
6	Increasing the Efficiency of Organic Solar Cells by Antireflection Coatings Based on Fluoride Composites. Technical Physics Letters, 2018, 44, 295-296.	0.7	3
7	The Influence of Technological Regimes of Synthesizing a Solar Furnace on the Phase Composition of TiO2-CuO Cermets and the Optical Properties of Coatings on Their Basis. Technical Physics, 2018, 63, 62-66.	0.7	2
8	Antireflection coatings based on fluoride formulations for organic solar cells. Technical Physics Letters, 2016, 42, 359-361.	0.7	4
9	Antireflection composite coatings for organic solar cells. Applied Solar Energy (English Translation) Tj ETQq1 1 C).784314 r 1.6	gBT /Overlock
10	Determination of the Efficiency of Ceramic Foam Filters Based on Raw Materials and Industrial Wastes in Uzbekistan. Glass and Ceramics (English Translation of Steklo I Keramika), 2016, 73, 141-143.	0.6	0
11	Manufacture of Ceramic High-Porosity Cellular Materials Based on Raw Materials and Production Wastes in Uzbekistan. Glass and Ceramics (English Translation of Steklo I Keramika), 2015, 72, 35-37.	0.6	1
12	Characteristics of phase formation in Angren deposit clays melted with a solar furnace. Applied Solar Energy (English Translation of Geliotekhnika), 2014, 50, 27-29.	1.6	2
13	Phase formation in ceramic materials that contain a cordierite glass synthesized by means of a large solar furnace. Applied Solar Energy (English Translation of Geliotekhnika), 2013, 49, 46-48.	1.6	1
14	Effective antireflection coating based on TiO2-SiO2 mixture for solar cells. Technical Physics Letters, 2013, 39, 305-307.	0.7	5
15	Pyrocerams based on cordierite glass synthesized in solar furnace with enhanced sintering range. Applied Solar Energy (English Translation of Geliotekhnika), 2011, 47, 56-58.	1.6	1
16	Sintered crystalline materials on the basis of cordierite glass obtained by means of concentrated radiant flux. Applied Solar Energy (English Translation of Geliotekhnika), 2010, 46, 202-205.	1.6	2
17	Antireflection coatings for solar cells based on an alloy of a mixture of MgO and SiO2. Applied Solar Energy (English Translation of Geliotekhnika), 2010, 46, 296-297.	1.6	6
18	Crystal glass materials based on catalyzed cordierite glass synthesized under exposure to concentrated radiant flux. Glass and Ceramics (English Translation of Steklo I Keramika), 2009, 66, 120-124.	0.6	5

#	Article	IF	CITATIONS
19	Influence of gaseous medium on crystallization of cordierite glasses, synthesized by exposure to concentrated solar radiation. Applied Solar Energy (English Translation of Geliotekhnika), 2009, 45, 102-104.	1.6	0
20	Influence of melt cooling rate on crystallization processes of cordierite glass under action of concentrated radiant flux. Applied Solar Energy (English Translation of Geliotekhnika), 2009, 45, 203-205.	1.6	0
21	Antireflection coatings for solar elements based on Al2O3 and SiO2 oxides. Applied Solar Energy (English Translation of Geliotekhnika), 2009, 45, 295-297.	1.6	3
22	Crystallization of μ-and α-cordierite in glass obtained via melting by concentrated radiant flux. Applied Solar Energy (English Translation of Geliotekhnika), 2008, 44, 135-138.	1.6	9
23	Modification of aluminum alloys in a solar furnace. Applied Solar Energy (English Translation of) Tj ETQq1 1 0.784	314 rgBT	Qverlock 10
24	Influence of purity of the initial raw material on crystallization of cordierite glasses synthesized under the impact of a concentrated radiant flux. Applied Solar Energy (English Translation of) Tj ETQq0 0 0 rgBT /(D vee lock I	101Tf 50 537
25	Acid-resistant materials made from Uzbekistan mineral raw material. Glass and Ceramics (English) Tj ETQq1 1 0.78	84314 rgE 0.6	3T /Overlock
26	Ceramogranite made from natural minerals found in Uzbekistan. Glass and Ceramics (English) Tj ETQq0 0 0 rgBT (Overlock	10 Tf 50 462
27	Properties of high-voltage porcelain with alumina-containing raw material from Uzbekistan. Class and Ceramics (English Translation of Steklo I Keramika), 2007, 64, 437-438.	0.6	1
28	Glass ceramics based on spodumene glass produced in a solar furnace. Glass and Ceramics (English) Tj ETQq0 0 0	rgBT /Ove 0.6	erlock 10 Tf S
29	Lightweight Dinas Refractories Based on Rice Husk Ash. Refractories and Industrial Ceramics, 2005, 46, 187-188.	0.6	4
30	Electric Insulation Ceramics Based on Raw Materials from Uzbekistan. Glass and Ceramics (English) Tj ETQq0 0 0	rgBT /Ove 0.6	rlock 10 Tf 5
31	Prospects for the Development of Refractory Materials Production in the Republic of Uzbekistan. Refractories and Industrial Ceramics, 2002, 43, 265-268.	0.6	1
32	Glass Ceramic Materials Based on Basalt Rocks from the Koitashskoe Ore Field. Glass and Ceramics (English Translation of Steklo I Keramika), 2002, 59, 302-304.	0.6	3
33	Title is missing!. Refractories and Industrial Ceramics, 2002, 43, 359-361.	0.6	9