
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10193170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plants and microbes' responses to the net nitrification rates of chemical fertilizers in vegetable soils. Applied Soil Ecology, 2021, 158, 103783.	2.1	14
2	Superior visible-light assisted water splitting performance by Fe incorporated ZnO photoanodes. Materials Research Bulletin, 2020, 122, 110627.	2.7	14
3	Green emitter and thermally stable layered tetraethyl ammonium lead bromoiodide perovskite. Optik, 2020, 207, 163828.	1.4	2
4	Evaluation of electrochemical properties of organic template assisted PdO incorporated NiO for H2/O2 evolution. Microchemical Journal, 2020, 158, 105282.	2.3	2
5	Phyto-inspired and scalable approach for the synthesis of PdO–2Mn ₂ O ₃ : a nano-material for application in water splitting electro-catalysis. RSC Advances, 2020, 10, 29961-29974.	1.7	15
6	Nanostructured Lead Sulphide Depositions by AACVD Technique Using Bis(Isobutyldithiophosphinato)Lead(II) Complex as Single Source Precursor and Its Impedance Study. Nanomaterials, 2020, 10, 1438.	1.9	3
7	Effect of Long-Term Pesticides and Chemical Fertilizers Application on the Microbial Community Specifically Anammox and Denitrifying Bacteria in Rice Field Soil of Jhenaidah and Kushtia District, Bangladesh. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 828-833.	1.3	21
8	Deposition of CuFeS ₂ and Cu ₂ FeSnS ₄ thin films and nanocrystals using diisobutyldithiophosphinato-metal precursors. , 2020, , .		2
9	Electronic Tuning of Zinc Oxide by Direct Fabrication of Chromium (Cr) incorporated photoanodes for Visible-light driven Water Splitting Applications. Scientific Reports, 2020, 10, 9707.	1.6	12
10	Organic template-based ZnO embedded Mn ₃ O ₄ nanoparticles: synthesis and evaluation of their electrochemical properties towards clean energy generation. RSC Advances, 2020, 10, 9854-9867.	1.7	21
11	Levels of heavy metal concentrations and their effect on net nitrification rates and nitrifying archaea/bacteria in paddy soils of Bangladesh. Applied Soil Ecology, 2020, 156, 103697.	2.1	29
12	Organic template-assisted green synthesis of CoMoO ₄ nanomaterials for the investigation of energy storage properties. RSC Advances, 2020, 10, 8115-8129.	1.7	52
13	Effect of NiO on organic framework functionalized ZnO nanoparticles for energy storage application. International Journal of Energy Research, 2020, 44, 5259-5271.	2.2	29
14	Functionalization of MoO3NiMoO4 nanocomposite using organic template for energy storage application. Journal of Energy Storage, 2020, 29, 101309.	3.9	38
15	Cobalt sulfide nanoparticles: Synthesis, water splitting and supercapacitance studies. Materials Science in Semiconductor Processing, 2020, 109, 104925.	1.9	29
16	Effects of bioactive compounds on the morphology and surface chemistry of MoO3/ZnMoO4 nanocomposite for supercapacitor. Journal of Materials Science, 2020, 55, 7743-7759.	1.7	21
17	Synthesis and analysis of ZnO oMoO 4 incorporated organic compounds for efficient degradation of azo dye pollutants under dark ambient conditions. Applied Organometallic Chemistry, 2020, 34, e5733.	1.7	6
18	Effect of chemical agents, metallic salts on the stability of α-amylase, protease and comparative analyses of enzyme activity of selected salad vegetables. Food Research, 2020, 4, 1066-1070.	0.3	1

#	Article	IF	CITATIONS
19	Metal selenobenzoate complexes: Novel single source precursors for the synthesis of metal selenide semiconductor nanomaterials. Materials Today: Proceedings, 2019, 10, 66-74.	0.9	11
20	In situ synthesis and deposition of un-doped and doped magnesium sulfide thin films by green technique. Optik, 2019, 182, 739-744.	1.4	12
21	Fabrication of Ni2+ incorporated ZnO photoanode for efficient overall water splitting. Applied Surface Science, 2019, 490, 302-308.	3.1	17
22	Chemically vaporized cobalt incorporated wurtzite as photoanodes for efficient photoelectrochemical water splitting. Materials Science in Semiconductor Processing, 2019, 101, 223-229.	1.9	12
23	3D hybrid perovskite solid solutions: a facile approach for deposition of nanoparticles and thin films <i>via</i> B-site substitution. New Journal of Chemistry, 2019, 43, 5448-5454.	1.4	5
24	The closed form solutions of simplified MCH equation and third extended fifth order nonlinear equation. Propulsion and Power Research, 2019, 8, 163-172.	2.0	9
25	Progress in selenium based metal-organic precursors for main group and transition metal selenide thin films and nanomaterials. Coordination Chemistry Reviews, 2019, 388, 24-47.	9.5	50
26	A new technique for obtaining approximate solution of higher order nonlinear differential equation. Journal of Interdisciplinary Mathematics, 2019, 22, 797-809.	0.4	5
27	Structural and Dynamic Characterizations Highlight the Deleterious Role of SULT1A1 R213H Polymorphism in Substrate Binding. International Journal of Molecular Sciences, 2019, 20, 6256.	1.8	43
28	Effect of probiotics on immune competence of giant freshwater prawn <i>Macrobrachium rosenbergii</i> . Aquaculture Research, 2019, 50, 644-657.	0.9	21
29	Closed-form travelling wave solutions to the nonlinear space-time fractional coupled Burgers' equation. Arab Journal of Basic and Applied Sciences, 2019, 26, 1-11.	1.0	7
30	BIOETHANOL PRODUCTION FROM AGRICULTURALPRODUCTS AND FRUITS OF BANGLADESH. International Journal of GEOMATE, 2019, 17, .	0.1	3
31	New Examples of Phase Control in the Preparation of Copper Sulfide Nanoparticles and Deposition of Thin Films by AACVD from Bis(piperidinedithiocarbamato)copper(II) Complex. ChemistrySelect, 2018, 3, 2943-2950.	0.7	21
32	Bis(selenobenzoato)dibutyltin(<scp>iv</scp>) as a single source precursor for the synthesis of SnSe nanosheets and their photo-electrochemical study for water splitting. Dalton Transactions, 2018, 47, 5465-5473.	1.6	44
33	PbS x Se1â^'x thin films from the thermal decomposition of lead(II) dodecylxanthate and bis(N,N-diethyl-N′-naphthoylselenoureato)lead(II) precursors. Journal of Materials Science, 2018, 53, 4283-4293.	1.7	15
34	The synthesis of a monodisperse quaternary ferrite (FeCoCrO ₄) from the hot injection thermolysis of the single source precursor [CrCoFeO(O ₂ C ^t Bu) ₆ (HO ₂ C ^t Bu) ₆ [Dalton Transactions, 2018, 47, 376-381.	. ^{1.6}	10
35	Broadband emission in a new lead free all-inorganic 3D CsZnCl2I perovskite. New Journal of Chemistry, 2018, 42, 17181-17184.	1.4	15
36	Polypyrrole-Fe ₂ O ₃ Nanocomposites with High Dielectric Constant: In Situ Chemical Polymerisation. Polymers and Polymer Composites, 2018, 26, 233-241.	1.0	11

#	Article	IF	CITATIONS
37	Novel single source precursor for synthesis of Sb2Se3 nanorods and deposition of thin films by AACVD: Photo-electrochemical study for water reduction catalysis. Solar Energy, 2018, 169, 526-534.	2.9	62
38	Structural investigations of SnS _{1â^'x} Se _x solid solution synthesized from chalcogeno-carboxylate complexes of organo-tin by colloidal and solvent-less routes. Dalton Transactions, 2018, 47, 10025-10034.	1.6	36
39	Photocatalytic removal of carcinogenic reactive red S3B dye by using ZnO and Cu doped ZnO nanoparticles synthesized by polyol method: A kinetic study. Solar Energy, 2018, 173, 875-881.	2.9	30
40	Nanocrystalline Pyrite for Photovoltaic Applications. ChemistrySelect, 2018, 3, 6488-6524.	0.7	25
41	Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3, 625-646.	0.7	8
42	Controlled synthesis of all inorganic CsPbBr 2 I perovskite by non-template and aerosol assisted chemical vapour deposition. Materials Letters, 2017, 190, 244-247.	1.3	29
43	Enhanced photocatalytic activity of water stable hydroxyl ammonium lead halide perovskites. Materials Science in Semiconductor Processing, 2017, 63, 6-11.	1.9	26
44	Nanocrystalline and monophasic thin films of metal chalcogenide (FeS, ZnS) and oxide (ZnO) by chemical bath deposition (CBD). Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700008.	0.8	2
45	Surfactant and template free synthesis of porous ZnS nanoparticles. Materials Chemistry and Physics, 2017, 189, 28-34.	2.0	25
46	A Facile Route to Cesium Lead Bromoiodide Perovskite Microcrystals and Their Potential Application as Sensors for Nitrophenol Explosives. European Journal of Inorganic Chemistry, 2017, 2017, 3755-3760.	1.0	32
47	The influence of precursor on rhenium incorporation into Re-doped MoS ₂ (Mo _{1â°x} Re _x S ₂) thin films by aerosol-assisted chemical vapour deposition (AACVD). Journal of Materials Chemistry C, 2017, 5, 9044-9052.	2.7	18
48	Magnetic spectroscopy of nanoparticulate greigite, Fe ₃ S ₄ . Mineralogical Magazine, 2017, 81, 857-872.	0.6	9
49	Optical and gas sensing properties of SnO2 nanowires grown by vapor–liquid–solid mechanism. Journal of Materials Science: Materials in Electronics, 2017, 28, 17993-18002.	1.1	5
50	Synthesis of Hybrid to Inorganic Quasi 2D-Layered Perovskite Nanoparticles. ChemistrySelect, 2017, 2, 5595-5599.	0.7	8
51	The effect of temperature on the growth of Ag2O nanoparticles and thin films from bis(2-hydroxy-1-naphthaldehydato)silver(I) complex by the thermal decomposition of spin–coated films. Materials Science in Semiconductor Processing, 2017, 71, 109-115.	1.9	13
52	Phase pure deposition of flower-like thin films by aerosol assisted chemical vapor deposition and solvent mediated structural transformation in copper sulfide nanostructures. Thin Solid Films, 2017, 638, 338-344.	0.8	33
53	Multiple closed form wave solutions to the KdV and modified KdV equations through the rational (<i>G</i> ′/ <i>G</i>)-expansion method. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017, 24, 160-168.	1.0	7
54	Magnetic, Electrical and Thermal Studies of Polypyrrole-Fe2O3 Nanocomposites. Polymer Science - Series A, 2017, 59, 902-908.	0.4	3

#	Article	IF	CITATIONS
55	The Influence of Temperature on the Formation of Cubic Structured CdO Nanoparticles and Their Thin Films from <i> Bis</i> (2-hydroxy-1-naphthaldehydato)cadmium(II) Complex via Thermal Decomposition Technique. Journal of Nanotechnology, 2017, 2017, 1-11.	1.5	7
56	A STUDY OF THE ONSET OF NATURAL CONVECTION DURING MELTING OF PCMS IN A CYLINDRICAL ENCLOSURE. , 2017, , .		0
57	Tuning the Phase and Shape of Copper Sulfide Nanostructures Using Mixed Solvent Systems. ChemistrySelect, 2016, 1, 5982-5989.	0.7	23
58	A facile method for the production of SnS thin films from melt reactions. Journal of Materials Science, 2016, 51, 6166-6172.	1.7	38
59	Nanoparticles of Cu ₂ ZnSnS ₄ as performance enhancing additives for organic field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 5109-5115.	2.7	11
60	A chemodosimetric approach for the selective detection of Pb ²⁺ ions using a cesium based perovskite. New Journal of Chemistry, 2016, 40, 9719-9724.	1.4	37
61	Impact of commercial probiotics application on growth and production of giant fresh water prawn (Macrobrachium Rosenbergii De Man, 1879). Aquaculture Reports, 2016, 4, 112-117.	0.7	26
62	The effect of alkyl chain length on the structure of lead(<scp>ii</scp>) xanthates and their decomposition to PbS in melt reactions. Dalton Transactions, 2016, 45, 16345-16353.	1.6	45
63	Heterocyclic Bismuth(III) Dithiocarbamato Complexes as Singleâ€6ource Precursors for the Synthesis of Anisotropic Bi ₂ S ₃ Nanoparticles. Chemistry - A European Journal, 2016, 22, 13127-13135.	1.7	27
64	The deposition of PbS and PbSe thin films from lead dichalcogenoimidophosphinates by AACVD. Inorganica Chimica Acta, 2016, 453, 439-442.	1.2	23
65	Synthesis, characterization and X-ray crystal structures of two non-molecular coordination polymers of manganese(II) and copper(II) with N-(2-pyridylmethyl)-l-alanine and isothiocyanato ligands. Transition Metal Chemistry, 2016, 41, 889-896.	0.7	2
66	A facile approach for selective and sensitive detection of aqueous contamination in DMF by using perovskite material. Materials Letters, 2016, 183, 135-138.	1.3	25
67	Synthetic routes to iron chalcogenide nanoparticles and thin films. Dalton Transactions, 2016, 45, 18803-18812.	1.6	41
68	Phase controlled synthesis of copper sulfide nanoparticles by colloidal and non-colloidal methods. Materials Chemistry and Physics, 2016, 180, 404-412.	2.0	14
69	Assembly of Submicron Sized Ag, Co, and Ni Particles Into Thin Films at Liquid/Liquid Interfaces. Journal of Nanoscience and Nanotechnology, 2016, 16, 5420-5425.	0.9	2
70	Deposition of morphology-tailored PbS thin films by surfactant-enhanced aerosol assisted chemical vapor deposition. Materials Science in Semiconductor Processing, 2016, 46, 39-45.	1.9	40
71	Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. Journal of Materials Chemistry C, 2016, 4, 2312-2318.	2.7	46
72	Colloidal Sb ₂ S ₃ nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 6809-6814.	5.2	21

#	Article	IF	CITATIONS
73	Heterocyclic dithiocarbamato-iron(<scp>iii</scp>) complexes: single-source precursors for aerosol-assisted chemical vapour deposition (AACVD) of iron sulfide thin films. Dalton Transactions, 2016, 45, 2647-2655.	1.6	49
74	Terbium Oxide, Fluoride, and Oxyfluoride Nanoparticles with Magneto-optical Properties. Bulletin of the Chemical Society of Japan, 2015, 88, 1453-1458.	2.0	7
75	Structural, optical, magnetic and half-metallic studies of cobalt doped ZnS thin films deposited via chemical bath deposition. Journal of Materials Chemistry C, 2015, 3, 6755-6763.	2.7	59
76	Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals. Chemistry of Materials, 2015, 27, 3797-3800.	3.2	29
77	Synthesis of mackinawite FeS thin films from acidic chemical baths. Materials Science in Semiconductor Processing, 2015, 32, 1-5.	1.9	20
78	In Situ Synthesis of PbS Nanocrystals in Polymer Thin Films from Lead(II) Xanthate and Dithiocarbamate Complexes: Evidence for Size and Morphology Control. Chemistry of Materials, 2015, 27, 2127-2136.	3.2	84
79	Synthesis of pyrite thin films and transition metal doped pyrite thin films by aerosol-assisted chemical vapour deposition. New Journal of Chemistry, 2015, 39, 1013-1021.	1.4	41
80	Aerosol assisted chemical vapor deposition (AACVD) of CdS thin films from heterocyclic cadmium(II) complexes. Inorganica Chimica Acta, 2015, 434, 181-187.	1.2	26
81	Study of Thermal Conductivity and Mechanical Property of Insulating Firebrick Produced by Local Clay and Petroleum Coal Dust as Raw Materials. Procedia Engineering, 2015, 105, 121-128.	1.2	13
82	Aerosol assisted chemical vapor deposition of Sb2S3 thin films: Environmentally benign solar energy material. Materials Science in Semiconductor Processing, 2015, 40, 643-649.	1.9	24
83	Chemical bath deposition of Fe-doped ZnS thin films: Investigations of their ferromagnetic and half-metallic properties. Materials Science in Semiconductor Processing, 2015, 39, 283-291.	1.9	55
84	The AACVD of Cu ₂ FeSn(S _x Se _{1â^'x}) ₄ : potential environmentally benign solar cell materials. New Journal of Chemistry, 2015, 39, 7046-7053.	1.4	25
85	Deposition of cadmium sulfide and zinc sulfide thin films by aerosol-assisted chemical vapors from molecular precursors. Turkish Journal of Chemistry, 2015, 39, 169-178.	0.5	24
86	Investigation of PbS nanocrystals sensitized extremely thin absorber (ETA) solar cell. Materials Science in Semiconductor Processing, 2015, 36, 20-26.	1.9	11
87	Growth of Cu2ZnSnSe4 and Cu2FeSnSe4 thin films by AACVD from molecular precursors. Materials Letters, 2015, 152, 60-64.	1.3	15
88	AACVD of Cu _{2â^'x} S, In ₂ S ₃ and CuInS ₂ thin films from [Cu(ⁱ Bu ₂ PS ₂)(PPh ₃) ₂] and [In(ⁱ Bu ₂ PS ₂) ₃] as single source precursors. New Journal of Chemistry, 2015, 39, 4047-4054.	1.4	12
89	Room temperature ferromagnetism and half metallicity in nickel doped ZnS: Experimental and DFT studies. Materials Chemistry and Physics, 2015, 160, 440-446.	2.0	28
90	The controlled deposition of Cu ₂ (Zn _y Fe _{1ây})SnS ₄ , Cu ₂ (Zn _y Fe _{1ây})SnSe ₄ and Cu ₂ (Zn _y Fe _{1ây})Sn(S _x Se _{1âx}) ₄ th films by AACVD: potential solar cell materials based on earth abundant elements. Journal of Materials Chemistry C, 2015, 3, 5733-5741.	ıin2.7	11

#	Article	IF	CITATIONS
91	Phase-pure fabrication and shape evolution studies of SnS nanosheets. New Journal of Chemistry, 2015, 39, 9569-9574.	1.4	43
92	Transition metal doped pyrite (FeS ₂) thin films: structural properties and evaluation of optical band gap energies. Journal of Materials Chemistry C, 2015, 3, 12068-12076.	2.7	59
93	Morphology and band gap controlled AACVD of CdSe and CdS Se1â^ thin films using novel single source precursors: Bis(diethyldithio/diselenocarbamato)cadmium(II). Materials Science in Semiconductor Processing, 2015, 40, 848-854.	1.9	18
94	Synthesis of Nanoparticulate Alloys of the Composition Cu ₂ Zn _{1–<i>x</i>} Fe _{<i>x</i>} SnS ₄ : Structural, Optical, and Magnetic Properties. Journal of the American Chemical Society, 2015, 137, 15086-15089.	6.6	17
95	Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors. Journal of Crystal Growth, 2015, 415, 93-99.	0.7	75
96	Deposition of phase pure nickel sulfide thin films from bis(O-alkylxanthato)–nickel(II) complexes by the aerosol assisted chemical vapour deposition (AACVD) method. Materials Science in Semiconductor Processing, 2015, 30, 368-375.	1.9	16
97	Optimising conditions for the growth of nanocrystalline ZnS thin films from acidic chemical baths. Materials Science in Semiconductor Processing, 2015, 30, 292-297.	1.9	35
98	Decay of Temperature Fluctuations in Dusty Fluid Homogeneous Turbulence Prior to the Ultimate Period in Presence of Coriolis Force. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7, 1932-1939.	0.1	1
99	In vitro Morphogenesis of Arabian Date Palm (Phoenix dactylifera L.). Plant Tissue Culture and Biotechnology, 2014, 23, 211-219.	0.1	0
100	Determinants of Public Attitudes to Genetically Modified Salmon. PLoS ONE, 2014, 9, e86174.	1.1	38
101	Gene Technology for Papaya Ringspot Virus Disease Management. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	33
102	Combining Ability of Pod Yield and Related Traits of Groundnut (Arachis hypogaeaL.) under Salinity Stress. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	9
103	Transport Equations of Three-point Distribution Functions in MHD Turbulent Flow for Velocity, Magnetic Temperature and Concentration. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7, 5184-5220.	0.1	2
104	Inâ€Situ Synthesis of Selfâ€Assembled Gold Nanoparticles on Glass or Silicon Substrates through Reactive Inkjet Printing. Angewandte Chemie - International Edition, 2014, 53, 420-423.	7.2	33
105	Dialkyldiselenophosphinato-metal complexes – a new class of single source precursors for deposition of metal selenide thin films and nanoparticles. IOP Conference Series: Materials Science and Engineering, 2014, 64, 012019.	0.3	2
106	Bis(piperidinedithiocarbamato)pyridinecadmium(<scp>ii</scp>) as a single-source precursor for the synthesis of CdS nanoparticles and aerosol-assisted chemical vapour deposition (AACVD) of CdS thin films. New Journal of Chemistry, 2014, 38, 6073-6080.	1.4	55
107	Synthesis of iron selenide nanocrystals and thin films from bis(tetraisopropyldiselenoimidodiphosphinato)iron(<scp>ii</scp>) and bis(tetraphenyldiselenoimidodiphosphinato)iron(<scp>ii</scp>) complexes. Journal of Materials Chemistry A. 2014. 2. 20612-20620.	5.2	25
108	Factors influencing stakeholders' attitudes toward cross-kingdom gene transfer in rice. New Genetics and Society, 2014, 33, 370-399.	0.7	13

#	Article	IF	CITATIONS
109	Effect of percentage (mass %) of coal on the mechanical and thermal behavior of insulating fire bricks manufactured by burnout process. , 2014, , .		1
110	Deposition of binary, ternary and quaternary metal selenide thin films from diisopropyldiselenophosphinato-metal precursors. Journal of Crystal Growth, 2014, 394, 39-48.	0.7	23
111	Colloidal Synthesis of ZnS, CdS and Zn x Cd1â^x S Nanoparticles from Zinc and Cadmium Thiobiuret Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 226-240.	1.9	19
112	Synthesis of SnO2 nanostructures by ultrasonic-assisted sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 69, 617-624.	1.1	17
113	Phaseâ€Controlled Deposition of Copper Sulfide Thin Films by Using Singleâ€Molecular Precursors. European Journal of Inorganic Chemistry, 2014, 2014, 533-538.	1.0	17
114	Deposition of cobalt and nickel sulfide thin films from thio- and alkylthio-urea complexes as precursors via the aerosol assisted chemical vapour deposition technique. Thin Solid Films, 2014, 564, 51-57.	0.8	27
115	A One-Pot Synthesis of Monodispersed Iron Cobalt Oxide and Iron Manganese Oxide Nanoparticles from Bimetallic Pivalate Clusters. Chemistry of Materials, 2014, 26, 999-1013.	3.2	50
116	Facile synthesis of phosphine free ultra-small PbSe nanocrystals and their light harvesting studies in ETA solar cells. Dalton Transactions, 2014, 43, 16424-16430.	1.6	6
117	Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Science Bulletin, 2014, 59, 703-714.	1.7	65
118	Hot injection thermolysis of heterometallic pivalate clusters for the synthesis of monodisperse zinc and nickel ferrite nanoparticles. Journal of Materials Chemistry C, 2014, 2, 6781-6789.	2.7	14
119	The aerosol assisted chemical vapour deposition of SnSe and Cu ₂ SnSe ₃ thin films from molecular precursors. Chemical Communications, 2014, 50, 14328-14330.	2.2	39
120	Routes to tin chalcogenide materials as thin films or nanoparticles: a potentially important class of semiconductor for sustainable solar energy conversion. Inorganic Chemistry Frontiers, 2014, 1, 577-598.	3.0	87
121	A direct synthesis of water soluble monodisperse cobalt and manganese ferrite nanoparticles from iron based pivalate clusters by the hot injection thermolysis method. Materials Science in Semiconductor Processing, 2014, 27, 303-308.	1.9	21
122	Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts. CrystEngComm, 2014, 16, 6080-6088.	1.3	52
123	The syntheses and structures of Zn(II) heterocyclic piperidine and tetrahydroquinoline dithiocarbamates and their use as single source precursors for ZnS nanoparticles. Polyhedron, 2014, 67, 129-135.	1.0	28
124	Colloidal preparation of copper selenide and indium selenide nanoparticles by single source precursors approach. , 2013, , .		1
125	Synthesis of multi-podal CdS nanostructures using heterocyclic dithiocarbamato complexes as precursors. Polyhedron, 2013, 56, 62-70.	1.0	28
126	Organotin Dithiocarbamates: Single-Source Precursors for Tin Sulfide Thin Films by Aerosol-Assisted Chemical Vapor Deposition (AACVD). Chemistry of Materials, 2013, 25, 266-276.	3.2	129

#	Article	IF	CITATIONS
127	The synthesis of iron sulfide nanocrystals from tris(O-alkylxanthato)iron(iii) complexes. Journal of Materials Chemistry A, 2013, 1, 8766.	5.2	35
128	The synthesis, spectroscopy and X-ray single crystal structure of		

#	Article	IF	CITATIONS
145	High-throughput route to Cu2â^'xS nanoparticles from single molecular precursor. Materials Science in Semiconductor Processing, 2012, 15, 218-221.	1.9	5
146	Deposition of iron sulfide thin films by AACVD from single source precursors. Journal of Crystal Growth, 2012, 346, 106-112.	0.7	36
147	Nickel and Iron Sulfide Nanoparticles from Thiobiurets. Journal of Physical Chemistry C, 2012, 116, 2253-2259.	1.5	54
148	Nanostructured ZnO Thin Films for Optical, Electrical, and Photoelectrochemical Applications from a New Zn Complex. Industrial & Engineering Chemistry Research, 2012, 51, 16361-16368.	1.8	11
149	Anti-inflammatory and analgesic activities of acetophenone semicarbazone and benzophenone semicarbazone. Asian Pacific Journal of Tropical Biomedicine, 2012, 2, S1036-S1039.	0.5	20
150	Eosinophilic Fasciitis: What Matters in Management in a Developing Country—A Case Report with Two and a Half-year Follow-up. Journal of Health, Population and Nutrition, 2012, 30, 117-20.	0.7	7
151	Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chemical Communications, 2012, 48, 5703.	2.2	204
152	Single source molecular precursor routes to lead chalcogenides. Dalton Transactions, 2012, 41, 10497.	1.6	60
153	Mixing in turbulent free jets issuing from isosceles triangular orifices with different apex angles. Experimental Thermal and Fluid Science, 2012, 39, 237-251.	1.5	35
154	The oriented self-assembly of small PbSe nanocrystals into extended structures â€~nanoworms'. Materials Letters, 2012, 77, 78-81.	1.3	7
155	Near-field mixing in turbulent free jets issuing from triangular orifices with different apex angles. , 2012, , .		Ο
156	A novel single source precursor: [bis(N,N-diethyl-N′-naphthoyl-selenoureato)palladium(<scp>ii</scp>)] for palladium selenide thin films and nanoparticles. Chemical Communications, 2011, 47, 1899-1901.	2.2	23
157	Phosphine stabilized copper(i) complexes of dithiocarbamates and xanthates and their decomposition pathways. New Journal of Chemistry, 2011, 35, 2773.	1.4	44
158	The chemical vapor deposition of Cu2ZnSnS4 thin films. Chemical Science, 2011, 2, 1170.	3.7	95
159	New routes to copper sulfide nanostructures and thin films. Journal of Materials Chemistry, 2011, 21, 17888.	6.7	70
160	Deposition of iron sulfide nanocrystals from single source precursors. Journal of Materials Chemistry, 2011, 21, 9737.	6.7	82
161	Thio- and Dithio-Biuret Precursors for Zinc Sulfide, Cadmium Sulfide, and Zinc Cadmium Sulfide Thin Films. Chemistry of Materials, 2011, 23, 1471-1481.	3.2	62
162	Flow reactor synthesis of CdSe, CdS, CdSe/CdS and CdSeS nanoparticles from single molecular precursor(s). Journal of Materials Chemistry, 2011, 21, 18768.	6.7	50

#	Article	IF	CITATIONS
163	Contribution of morpho-physiological attributes in determining the yield of mungbean. African Journal of Biotechnology, 2011, 10, 12897-12904.	0.3	8
164	Mixing in Turbulent Free Jets Issuing from Isosceles Triangular Orifices with Different Apex Angles. , 2011, , .		0
165	A colloidal synthesis of CuInSe2, CuGaSe2 and CuIn1â^'xGaxSe2 nanoparticles from diisopropyldiselenophosphinatometal precursors. Nanoscale, 2011, 3, 5132.	2.8	49
166	Morphologyâ€Tailored Synthesis of PbSe Nanocrystals and Thin Films from Bis[<i>N</i> , <i>N</i> â€diisobutylâ€ <i>N′</i> â€(4â€nitrobenzoyl)selenoureato]lead(II). European Journal of Inorganic Chemistry, 2011, 2011, 2984-2990.	1.0	22
167	Synthesis, characterization and X-ray diffraction of [Cu(malonate)(phen)2]2·17H2O complex. Journal of Molecular Structure, 2011, 1001, 12-15.	1.8	4
168	Synthesis, characterization, and crystal structure of a copper(II) complex of 1,10-phenanthroline and succinate. Journal of Coordination Chemistry, 2011, 64, 2353-2360.	0.8	7
169	Medicinal Plants of the Hodis: A Disappearing Tribe of Bangladesh. Journal of Alternative and Complementary Medicine, 2011, 17, 1103-1108.	2.1	12
170	COBALT(II)/NICKEL(II) COMPLEXES OF DITHIOACETYLACETONE [M(SacSac) ₂](M = Co, Ni) AS SINGLE SOURCE PRECURSORS FOR COBALT/NICKEL SULFIDE NANOSTRUCTURES. International Journal of Nanoscience, 2011, 10, 815-822.	0.4	7
171	Mean streamwise centreline velocity decay and entrainment in triangular and circular jets. , 2011, , .		1
172	Deposition of crystalline copper films from tetranuclear copper (II) complexes without application of reducing atmosphere. Applied Organometallic Chemistry, 2010, 24, 714-720.	1.7	8
173	N-[4-(Phenyliminomethyl)phenyl]acetamide 0.67-hydrate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2781-o2781.	0.2	0
174	Selective Deposition of Cobalt Sulfide Nanostructured Thin Films from Single-Source Precursors. Chemistry of Materials, 2010, 22, 4919-4930.	3.2	25
175	Single-molecule precursor-based approaches to cobalt sulphide nanostructures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4249-4260.	1.6	16
176	GROWTH AND FRUIT QUALITY RESPONSES OF HYDROPONICALLY CULTIVATED EGGPLANTS TO MINERAL CONTROLLED DEEP SEA WATER. Journal of Plant Nutrition, 2010, 33, 1970-1979.	0.9	5
177	Iron Thiobiurets: Single-Source Precursors for Iron Sulfide Thin Films. Inorganic Chemistry, 2010, 49, 8495-8503.	1.9	48
178	Nickel Sulfide Thin Films from Thio- and Dithiobiuret Precursors. Chemistry of Materials, 2010, 22, 6328-6340.	3.2	29