Alexey A Pakhomov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10192870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GFP Family: Structural Insights into Spectral Tuning. Chemistry and Biology, 2008, 15, 755-764.	6.2	177
2	Photochemical and Photoorientational Behavior of Liquid Crystalline Carbosilane Dendrimer with Azobenzene Terminal Groups. Journal of Physical Chemistry B, 2002, 106, 540-546.	1.2	69
3	Genetically encoded fluorescent indicators for live cell pH imaging. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2924-2939.	1.1	47
4	Synthetic Fluorophores for Visualizing Biomolecules in Living Systems. Acta Naturae, 2016, 8, 33-46.	1.7	44
5	Synthesis and photophysical properties of a new BODIPY-based siloxane dye. Tetrahedron Letters, 2016, 57, 979-982.	0.7	41
6	Photoconversion of the Chromophore of a Fluorescent Protein from Dendronephthya sp Biochemistry (Moscow), 2004, 69, 901-908.	0.7	38
7	A Purple-blue Chromoprotein from Goniopora tenuidens Belongs to the DsRed Subfamily of GFP-like Proteins. Journal of Biological Chemistry, 2003, 278, 46288-46292.	1.6	37
8	Chromophore Structure of the Kindling Fluorescent Protein asFP595 fromAnemonia sulcata. Journal of the American Chemical Society, 2007, 129, 7748-7749.	6.6	30
9	Refined crystal structures of red and green fluorescent proteins from the button polypZoanthus. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1082-1093.	2.5	25
10	Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor. Biochemical and Biophysical Research Communications, 2017, 493, 1518-1521.	1.0	22
11	Structure and Reactivity of the Chromophore of a GFP-like Chromoprotein fromCondylactis giganteaâ€. Biochemistry, 2006, 45, 7256-7264.	1.2	21
12	Chromophore Aspartate Oxidationâ `Decarboxylation in the Green-to-Red Conversion of a Fluorescent Protein from Zoanthus sp. 2. Biochemistry, 2007, 46, 11528-11535.	1.2	19
13	BODIPY derivatives as fluorescent reporters of molecular activities in living cells. Russian Chemical Reviews, 2021, 90, 1213-1262.	2.5	18
14	Probing the structural determinants of yellow fluorescence of a protein from Phialidium sp Biochemical and Biophysical Research Communications, 2011, 407, 230-235.	1.0	13
15	BODIPY-based dye for no-wash live-cell staining and imaging. BioTechniques, 2017, 63, 77-80.	0.8	13
16	Modulation of the photophysical properties of multi-BODIPY-siloxane conjugates by varying the number of fluorophores. Dyes and Pigments, 2022, 203, 110371.	2.0	13
17	Synthesis, crystal structure and optical properties of a new meso-acrylate BODIPY dye. Mendeleev Communications, 2016, 26, 196-198.	0.6	12
18	FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. Biosensors, 2021, 11, 340.	2.3	12

Αιέχει Α Ρακηόμον

#	Article	IF	CITATIONS
19	Crystal structure of the fluorescent protein from <i>Dendronephthya</i> sp. in both green and photoconverted red forms. Acta Crystallographica Section D: Structural Biology, 2016, 72, 922-932.	1.1	11
20	Synthesis and crystal structure of a meso -decene-BODIPY dye as a functional bright fluorophore for silicone matrices. Mendeleev Communications, 2017, 27, 363-365.	0.6	8
21	Posttranslational chemistry of proteins of the GFP family. Biochemistry (Moscow), 2009, 74, 250-259.	0.7	7
22	Impact of external amino acids on fluorescent protein chromophore biosynthesis revealed by molecular dynamics and mutagenesis studies. Journal of Photochemistry and Photobiology B: Biology, 2020, 206, 111853.	1.7	5
23	The influence of chromophore-protein interactions on spectroscopic properties of the yellow fluorescent protein. Doklady Biochemistry and Biophysics, 2012, 445, 207-209.	0.3	3
24	Cancer cells targeting with genetically engineered constructs based on a pH-dependent membrane insertion peptide and fluorescent protein. Biochemical and Biophysical Research Communications, 2022, 612, 141-146.	1.0	3
25	Novel DBMBF2-BODIPY dyads connected via flexible linker: synthesis and photophysical properties. New Journal of Chemistry, 0, , .	1.4	2
26	Spectroscopic Analysis of Fluorescent Proteins Infiltrated into Photonic Crystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 915-919.	0.2	1
27	Physicochemical Properties of Photoconvertible Fluorescent Protein from Montastraea cavernosa. Russian Journal of Bioorganic Chemistry, 2021, 47, 244-251.	0.3	1
28	Generation of photoactivatable fluorescent protein from photoconvertible ancestor. Russian Journal of Bioorganic Chemistry, 2017, 43, 340-343.	0.3	0
29	Transformations of the Chromophore in the Course of Maturation of a Chromoprotein from Actinia equina. Russian Journal of Bioorganic Chemistry, 2021, 47, 230-235.	0.3	Ο
30	Generation and Characteristics of Genetically Encoded Fluorescent Sensors of Extracellular pH. Russian Journal of Bioorganic Chemistry, 2021, 47, 1060-1065.	0.3	0
31	The three-dimensional structure of red, yellow and green fluorescent proteins fromZoanthus. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C230-C231.	0.3	Ο
32	Crystal structure of the fluorescent protein from <i>Dendronephthya</i> sp. in both green and photoconverted red forms. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a38-a38.	0.0	0