

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10192838/publications.pdf Version: 2024-02-01

CANLL

#	Article	IF	CITATIONS
1	Selfâ€Polymerization of Monomer and Induced Interactions with Perovskite for Highly Performed and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2105290.	7.8	14
2	Annealing free tin oxide electron transport layers for flexible perovskite solar cells. Nano Energy, 2022, 94, 106919.	8.2	29
3	Highly Visibleâ€Transparent and Colorâ€Neutral Perovskite Solar Cells for Selfâ€Powered Smart Windows. Solar Rrl, 2022, 6, .	3.1	8
4	LaRuSi Electride Disrupts the Scaling Relations for Ammonia Synthesis. Chemistry of Materials, 2022, 34, 1677-1685.	3.2	19
5	Establishing Multifunctional Interface Layer of Perovskite Ligand Modified Lead Sulfide Quantum Dots for Improving the Performance and Stability of Perovskite Solar Cells. Small, 2020, 16, e2002628.	5.2	20
6	In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasiâ€Core–Shell Structure and Heterojunction for Improving Efficiency and Stability of Lowâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903013.	10.2	31
7	Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093.	4.6	43
8	Selfâ€Assembled Quasiâ€3D Nanocomposite: A Novel pâ€Type Hole Transport Layer for High Performance Inverted Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1706403.	7.8	39
9	Thermionic Emission–Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solutionâ€Processed Perovskites. Advanced Energy Materials, 2018, 8, 1801954.	10.2	40
10	Modulating Hysteresis of Perovskite Solar Cells by a Poling Voltage. Journal of Physical Chemistry C, 2016, 120, 22784-22792.	1.5	28
11	Fabrication of highly conductive carbon nanotube fibers for electrical application. Materials Research Express, 2015, 2, 095604.	0.8	24
12	Perovskite Solar Cell Using a Two-Dimensional Titania Nanosheet Thin Film as the Compact Layer. ACS Applied Materials & Interfaces, 2015, 7, 15117-15122.	4.0	20
13	High efficiency flexible perovskite solar cells using superior low temperature TiO ₂ . Energy and Environmental Science, 2015, 8, 3208-3214.	15.6	519
14	Workâ€Functionâ€Tunable Chlorinated Graphene Oxide as an Anode Interface Layer in Highâ€Efficiency Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400591.	10.2	85
15	A large area, flexible polyaniline/buckypaper composite with a core–shell structure for efficient supercapacitors. Journal of Materials Chemistry A, 2014, 2, 5898-5902.	5.2	43