Yoshitaka Ano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10192564/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CHATIONS
1	5-Keto- <scp>d</scp> -Gluconate Production Is Catalyzed by a Quinoprotein Glycerol Dehydrogenase, Major Polyol Dehydrogenase, in <i>Gluconobacter</i> Species. Applied and Environmental Microbiology, 2003, 69, 1959-1966.	3.1	119
2	Microbial Production of Glyceric Acid, an Organic Acid That Can Be Mass Produced from Glycerol. Applied and Environmental Microbiology, 2009, 75, 7760-7766.	3.1	108
3	PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. Journal of Cell Biology, 2006, 173, 709-717.	5.2	77
4	Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics, 2013, 9, 178-187.	3.0	72
5	A Sorting Nexin PpAtg24 Regulates Vacuolar Membrane Dynamics during Pexophagy via Binding to Phosphatidylinositol-3-Phosphate. Molecular Biology of the Cell, 2005, 16, 446-457.	2.1	69
6	Membrane-bound Sugar Alcohol Dehydrogenase in Acetic Acid Bacteria catalyzes L-Ribulose Formation and NAD-Dependent Ribitol Dehydrogenase is Independent of the Oxidative Fermentation. Bioscience, Biotechnology and Biochemistry, 2001, 65, 115-125.	1.3	58
7	Isolation and Characterization of Thermotolerant Gluconobacter Strains Catalyzing Oxidative Fermentation at Higher Temperatures. Bioscience, Biotechnology and Biochemistry, 2000, 64, 2306-2315.	1.3	49
8	High Shikimate Production from Quinate with Two Enzymatic Systems of Acetic Acid Bacteria. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2579-2582.	1.3	46
9	Intracellular ATP Correlates with Mode of Pexophagy inPichia pastoris. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1527-1533.	1.3	44
10	Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. Journal of Biochemistry, 2013, 153, 535-545.	1.7	41
11	Membrane-Bound, 2-Keto- d -Gluconate-Yielding d -Gluconate Dehydrogenase from " Gluconobacter dioxyacetonicus ―IFO 3271: Molecular Properties and Gene Disruption. Applied and Environmental Microbiology, 2007, 73, 6551-6556.	3.1	36
12	Role of Vac8 in Formation of the Vacuolar Sequestering Membrane during Micropexophagy. Autophagy, 2006, 2, 272-279.	9.1	28
13	Purification and Properties of NADP-Dependent Shikimate Dehydrogenase fromGluconobacter oxydansIFO 3244 and Its Application to Enzymatic Shikimate Production. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2786-2789.	1.3	24
14	Biochemical and Spectroscopic Properties of Cyanide-Insensitive Quinol Oxidase from Gluconobacter oxydans. Journal of Biochemistry, 2009, 146, 263-271.	1.7	24
15	Coffee pulp koji of Aspergillus sojae as stable immobilized catalyst of chlorogenate hydrolase. Applied Microbiology and Biotechnology, 2008, 81, 143-151.	3.6	23
16	Crystallization and Properties of NADPH-DependentL-Sorbose Reductase fromGluconobacter melanogenusIFO 3294. Bioscience, Biotechnology and Biochemistry, 1999, 63, 2137-2143.	1.3	22
17	Membrane-bound glycerol dehydrogenase catalyzes oxidation of D-pentonates to 4-keto-D-pentonates, D-fructose to 5-keto-D-fructose, and D-psicose to 5-keto-D-psicose. Bioscience, Biotechnology and Biochemistry, 2017, 81, 411-418.	1.3	22
18	Selective, High Conversion of <scp>D</scp> -Glucose to 5-Keto- <scp>D</scp> -gluoconate by <i>Gluconobacter suboxydans</i> . Bioscience, Biotechnology and Biochemistry, 2011, 75, 586-589.	1.3	21

Υοςηιτακά Ανο

#	Article	IF	CITATIONS
19	Solubilization, Purification, and Properties of Membrane-BoundD-Glucono-δ-lactone Hydrolase fromGluconobacter oxydans. Bioscience, Biotechnology and Biochemistry, 2009, 73, 241-244.	1.3	17
20	Enzymatic Preparation of Metabolic Intermediates, 3-Dehydroquinate and 3-Dehydroshikimate, in the Shikimate Pathway. Bioscience, Biotechnology and Biochemistry, 2006, 70, 3081-3083.	1.3	15
21	Energy Metabolism of a Unique Acetic Acid Bacterium, <i>Asaia bogorensis</i> , That Lacks Ethanol Oxidation Activity. Bioscience, Biotechnology and Biochemistry, 2008, 72, 989-997.	1.3	12
22	A Novel 3-Dehydroquinate Dehydratase Catalyzing Extracellular Formation of 3-Dehydroshikimate by Oxidative Fermentation ofGluconobacter oxydansIFO 3244. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1475-1482.	1.3	12
23	Time-resolved metabolomics of a novel trebouxiophycean alga using 13CO2 feeding. Journal of Bioscience and Bioengineering, 2013, 116, 408-415.	2.2	11
24	Electrochemistry of <scp>d</scp> -Gluconate 2-Dehydrogenase from <i>Gluconobacter frateurii</i> on Indium Tin Oxide Electrode Surface. Chemistry Letters, 2007, 36, 1164-1165.	1.3	10
25	Conversion of Quinate to 3-Dehydroshikimate by Ca-Alginate-Immobilized Membrane of Gluconobacter oxydansIFO 3244 and Subsequent Asymmetric Reduction of 3-Dehydroshikimate to Shikimate by Immobilized Cytoplasmic NADP-Shikimate Dehydrogenase. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2438-2444.	1.3	10
26	Purification and Properties of Two Different Dihydroxyacetone Reductases in <i>Gluconobacter suboxydans</i> Grown on Glycerol. Bioscience, Biotechnology and Biochemistry, 2008, 72, 2124-2132.	1.3	8
27	Purification and Characterization of Membrane-Bound 3-Dehydroshikimate Dehydratase from <i>Gluconobacter oxydans</i> IFO 3244, A New Enzyme Catalyzing Extracellular Protocatechuate Formation. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1084-1088.	1.3	8
28	The membrane-bound sorbosone dehydrogenase of Gluconacetobacter liquefaciens is a pyrroloquinoline quinone-dependent enzyme. Enzyme and Microbial Technology, 2020, 137, 109511.	3.2	8
29	The Occurrence of a Novel NADH Dehydrogenase, Distinct from the Old Yellow Enzyme, inGluconobacterStrains. Bioscience, Biotechnology and Biochemistry, 2008, 72, 260-264.	1.3	7
30	Direct Electron Transfer Reaction of d-Gluconate 2-Dehydrogenase Adsorbed on Bare and Thiol-modified Gold Electrodes. Electrochemistry, 2008, 76, 549-551.</span 	1.4	7
31	Preparation of Enzymes Required for Enzymatic Quantification of 5-Keto-D-gluconate and 2-Keto-D-gluconate. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2478-2486.	1.3	6
32	Enantioselective syntheses of both enantiomers of 9′-dehydroxyimperanene and 7,8-dihydro-9′-dehydroxyimperanene and the comparison of biological activity between 9-norlignans and dihydroguaiaretic acids. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3019-3023.	2.2	6
33	Pentose Oxidation by Acetic Acid Bacteria Led to a Finding of Membrane-Bound Purine Nucleosidase. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1131-1133.	1.3	5
34	Relocation of dehydroquinate dehydratase to the periplasmic space improves dehydroshikimate production with Gluconobacter oxydans strain NBRC3244. Applied Microbiology and Biotechnology, 2021, 105, 5883-5894.	3.6	5
35	Characterization of a cryptic, pyrroloquinoline quinone-dependent dehydrogenase of <i>Gluconobacter</i> sp. strain CHM43. Bioscience, Biotechnology and Biochemistry, 2021, 85, 998-1004.	1.3	3
36	Three ATP-dependent phosphorylating enzymes in the first committed step of dihydroxyacetone metabolism in Gluconobacter thailandicus NBRC3255. Applied Microbiology and Biotechnology, 2021, 105, 1227-1236.	3.6	3

#	Article	IF	CITATIONS
37	Periplasmic dehydroshikimate dehydratase combined with quinate oxidation in <i>Gluconobacter oxydans</i> for protocatechuate production. Bioscience, Biotechnology and Biochemistry, 2022, 86, 1151-1159.	1.3	1
38	Dissection and Reconstitution Provide Insights into Electron Transport in the Membrane-Bound Aldehyde Dehydrogenase Complex of Gluconacetobacter diazotrophicus. Journal of Bacteriology, 2022, 204, jb0055821.	2.2	0
39	The Beneficial Effects of Citrus kawachiensis Peel on Neurogenesis in the Hippocampus and Gut Microbiota Changes in a Chronic Unpredictable Mild Stress Mouse Model. Nutraceuticals, 2022, 2, 91-101.	1.7	0